
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

19980619 171
THESIS

ANALYSIS OF
JAVA DISTRIBUTED ARCHITECTURES

IN
DESIGNING AND IMPLEMENTING A

CLIENT/SERVER DATABASE SYSTEM

by

Ramis Akin
Frederick P. O'Brien

June 1998

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited

[MIC QUALITY DJ3PECTEID i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: ANALYSIS OF JAVA DISTRIBUTED ARCHITECTURES IN
DESIGNING AND IMPLEMENTING A CLIENT/SERVER DATABASE SYSTEM

6. AUTHOR(S) Akin, Ramis, O'Brien, Frederick P.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE:

13. ABSTRACT (maximum 200 words)
Having timely and accurate information is essential for effective management practices and

optimization of limited resources. Information is scattered throughout organizations and must be easily
accessible. A new solution is needed for effective and efficient management of data in today's distributed
client/server environment.

Java is destined to become a language for distributed computing. Java Development Kit (JDK) comes
with a broad range of classes for network and database programming. Java Database Connectivity (JDBC) is
one such class for providing client/server database access. There are many different approaches in using
JDBC, ranging from low level socket programming, to a more abstract middleware approach. This thesis
will analyze three different approaches: Sockets, Remote Method Invocation (RMI) and Commercial
Middleware servers.

Among the three approaches this thesis examined, database access through RMI is the most viable
approach because it uses an effective distributed object model. RMI abstracts the communication interface
to the level of a procedure call. Instead of working directly with sockets, programmers can invoke a remote
procedure as if it resided locally.

14. SUBJECT TERMS Database, JDBC, Java, RMI, Sockets 15. NUMBER OF
PAGES 248

16. PRICE CODE
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

ANALYSIS OF

JAVA DISTRIBUTED ARCHITECTURES IN DESIGNING AND IMPLEMENTING

A CLIENT/SERVER DATABASE SYSTEM

Ramis Akin
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1992

Frederick P. O'Brien

Captain, United States Army

B.A., University of Massachusetts, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCffiNCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1998

Authors:

Approved by:

Ramis Akin / Frederick P. O'Brien

C. Thomas Wu, Thesis Advisor

il UsZ
_Chri5 Eagle, Second Reader

7 2 C
Dan BogeVChairman, DepartmeritM Computer Science

in

IV

ABSTRACT

Having timely and accurate information is essential for effective management

practices and optimization of limited resources. Information is scattered throughout

organizations and must be easily accessible. A new solution is needed for effective and

efficient management of data in today's distributed client/server environment.

Java is destined to become a language for distributed computing. Java

Development Kit (JDK) comes with a broad range of classes for network and database

programming. Java Database Connectivity (JDBC) is one such class for providing

client/server database access. There are many different approaches in using JDBC,

ranging from low level socket programming, to a more abstract middleware approach.

This thesis will analyze three different approaches: Sockets, Remote Method Invocation

(RMI) and Commercial Middleware servers.

Among the three approaches this thesis examined, database access through RMI is

the most viable approach because it uses an effective distributed object model. RMI

abstracts the communication interface to the level of a procedure call. Instead of working

directly with sockets, programmers can invoke a remote procedure as if it resided locally.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. POTENTIAL SOLUTION 1
B. RESEARCH OBJECTIVES 3
C. SCOPE 3
D. THESIS ORGANIZATION 4

II. BACKGROUND 7

A. RELATIONAL DATABASE MODEL 7
B. STRUCTURED QUERY LANGUAGE 7

1. Basic SQL Statements 8
a. Create Table 8
b. Insert 8
c. Update 8
d. Delete 9
e. Select 9

2. Processing a SQL Statement 9
a. Parse the SQL Statement 9
b. Validate the SQL Statement 9
c. Generate an Access Plan 10
d. Execute the Access Plan 10

3. SQL Techniques 10
a. Embedded SQL 10
b. Stored Procedures 11
c. Call Level Interface 12

C. DATABASE APPLICATION PROGRAMMING INTERFACES 12
1. Proprietary Database Management System Interface 13
2. Open Database Connectivity 14
3. Java Database Connectivity 16
4. Middleware 17
5. Common Gateway Interface 19

D. CLIENT/SERVER MODEL 21
1. Two-Tier Client/Server Architecture 23
2. N- Tier Client Server System 24

III. JAVA DATABASE CONNECTIVITY (JDBC) 27

A. DRIVERMANAGER CLASS 29
B. CONNECTION INTERFACE 30

1. Statement 31
2. PreparedStatement 31
3. Callable statement 32
4. DatabaseMetaData 33

C. STATEMENT INTERFACE 34
1. Execute 34
2. Execute Query 35

vii

3. Execute Update 35
a. Create Table 35
b. Insert 36
c. Update 36
d. Delete 36

D. RESULTSET INTERFACE 36
1. Get Meta Data 37
2. Get Type 37
3. Next 37

E. JDBC DRIVERS 38
1. JDBC/ODBC Bridge (Type I) 39
2. Native-API, Partly Java Driver (Type II) 40
3. Network Protocol, All-Java Driver (Type III) 41
4. Native-Protocol, All-Java Driver (Type IV) 42
5. Driver Selection 43

F. CONCLUSION 43

IV. SOCKETS AND JDBC 45

A. INTRODUCTION 45
B. SOCKETS 45

1. Stream Socket Communication 47
2. Datagram Socket Communication 49
3. Multicast Socket Communication 51

C. MULTICAST SOCKET JDBC MODEL 51
1. Communication Protocol 53
2. Model Implementation 56

D. CONCLUSION 59

V. REMOTE METHOD INVOCATION AND JDBC 61

A. INTRODUCTION 61
B. REMOTE METHOD INVOCATION (RMI) 62

1. RMI System Architecture 63
a. Stub/Skeleton Layer 64
b. Remote Reference Layer 65
c. Transport Layer 65
d. Application Layer 66

2. RMI Development Process 66
a. Agree Upon the Interface 66
a. Implement the Interface 67
b. Object Server 68
c. Java Client Application 68
d. Run the System 69

C. RMI JDBC MODEL 69
1. Interface 70
2. Interface Implementation 73
3. Object Server 73
4. Client Application 73

viii

D. CONCLUSION 75

VI. MIDDLEWARE APPROACH 77

A. SYMANTEC VISUAL CAFE 78
1. Server Configuration 78

a. Connecting to Microsoft SQL 6.5 Server Database 79
b. Connecting to Sybase SQL Anywhere Server Database 79

2. Database Aware Components 80
3. Model Implementation 82
4. Visual Cafe Summary 83

B. BORLAND JBUILDER CLIENT/SERVER SUITE 84
1. Server Configuration 84

a. Connecting to Microsoft SQL 6.5 Server Database 85
2. Database Aware Components 85
3. Model Implementation 87
4. Summary 88

C. CONCLUSION 89

VII. CONCLUSION 91

A. SYNOPSIS 91
B. AREAS FOR FURTHER RESEARCH 92

1. Security 92
2. Application Server 93
3. Multicast Remote Objects 94
4. Object Oriented Database 94
5. Common Object Request Broker Architecture (CORBA) 94

C. CONCLUSION 94

LIST OF REFERENCES 97

APPENDIX A. JDBC REFERENCE TABLE 101

APPENDIX B. MULTICAST SOCKET MODEL 103

APPENDIX C. RMI JDBC MODEL 161

APPENDIX D. DEPLOYMENT 225

INITIAL DISTRIBUTION LIST 231

IX

LIST OF FIGURES

Figure 1: General Database Access 14
Figure 2: ODBC Implementation [Ref. 26] 16
Figure 3: Middleware Solution 18
Figure 4: Common Gateway Interface 20
Figure 5: Two-Tier Client/Server 23
Figure 6: N-Tier Client/Server Model 24
Figure 7: JDBC Object Relations [Ref. 13] 28
Figure 8: JDBC/ODBC Bridge 40
Figure 9: Net Protocol All Java Driver 41
Figure 10: Native Protocol JDBC Driver 43
Figure 11: Socket Communications 47
Figure 12: Stream Socket Communication 49
Figure 13: Socket Evaluation Environment 52
Figure 14: Message Format 53
Figure 15: Message Format 55
Figure 16: Database Datagram Socket Server 57
Figure 17: Multicast Parts Request 59
Figure 18: RMI Architecture [Ref. 15] 64
Figure 19: Marshalling 65
Figure 20: RMI Design Process 67
Figure 21: RMI Implementation 70
Figure 22: Commercial Tools Evaluation Environment 78
Figure 23: Multicast Model 103
Figure 24 : RMI Object Model 161.

XI

Xll

LIST OF TABLES

Table 1: JDK1.1 SQL Package 27
Table 2: Middleware Database Access 77

Xlll

XIV

ACKNOWLEDGEMENT/DEDICATIONS

One of the great pleasures of finishing up this thesis is acknowledging the support

of many people whose names may not appear any where in the thesis, but whose

cooperation, friendship, understanding and patience were crucial for us to prepare this

thesis and successfully publish it.

We would like to thank our thesis advisor Dr. Thomas Wu for assisting us in

exploring various Java technologies and making it a beneficial experience. We would

also like to thank our second reader, Lieutenant Commander Chris Eagle for his guidance

and support and helping us to see the new horizons in distributed computing. Our special

thanks to Dr. Debra Hensgen, whose Distributed Computing class changed the entire

focus of our thesis.

Throughout the thesis, we used the word "we" to indicate our two man team, Fred

and Ramis. In fact there were behind-the-scene members of our team - our dearest wives

Christine and Mine and also Fred's lovely children Patrick, Kelsey, Marisa and Courtney.

Without their patience, support and encouragement we would not be able to create a

thesis like this. Thank you all!

We would like to thank each other. Working together on this thesis was an

outstanding learning experience for both of us. Being able to share periods of frustration

and excitement with each other was unique. The friendship developed will last a lifetime.

xv

XVI

I. INTRODUCTION

Organizations rely on information to make effective business decisions and

corporate intranets are changing the way organizations conduct business. As networking

technologies continue to improve, with increasing bandwidth and reliability, effective

distributed computing is becoming a reality. Organizations are relying on internet

technologies to be the conduit for employees to access and manipulate corporate

information.

Having timely and accurate information is essential for effective management

practices and optimization of limited resources. Information can be stored effectively

and efficiently in Database Management Systems (DBMS), a software system that

manages the data integrity, storage and access of data in a database.

The goal of a database is to reduce redundant storage of information throughout

an organization. Data is stored in a central location and multiple clients are allowed to

access the data from various locations throughout the organization's network or via the

internet. In this client/server environment, client processes need to be able to effectively

locate the database server, and communicate with the remote server process.

A database aware client/server system is a system that allows client process to

access a server process, which in turn communicates with a database management

system. The client can manipulate the data, but the location of the database and the type

of DBMS used is transparent. There are a number of challenges in implementing a

database aware client/server system. Information needs to be accessible from various

client operating systems and possibly via the internet and a web browser. The networking

protocol, how information is transported from a client machine to a server machine, must

be agreed by both the client and server process. System designers must be able to

communicate with the DBMS, via an agreed upon interface. Optimization of resources, a

high return on investment, is essential in justifying implementing a database aware

client/server solution to various corporate managers. Organizations want to keep system

development and maintenance costs as low as possible. As system designers perform

their problem analysis these issues need to be addressed.

A. POTENTIAL SOLUTION

The programming language selected must facilitate a designers ability to meet the

above challenges. Java, developed by Sun Microsystems is an object-oriented network

centric programming language that is poised to enter the Enterprise Client/Server

environment.

Java provides the platform independence that may be demanded. A Java

application can run on any platform that has a Java Virtual Machine. This reduces the

costs and time associated with generating multiple versions of an application to run on

various platforms. Applications can easily be modified to create Java applets, which are

hosted by a Java-enabled web browser. This added flexibility allows an organization to

re-use programs and make them available via their intranet or the internet. System

administrators are not required to configure client machines, since all required class files

will be downloaded from the server. Any changes to the applet will result in the user

getting the most recent version, so will ultimately reduce software distribution expenses.

The java.net package provides a powerful and flexible infrastructure for

networking. The designer can use datagram sockets or stream sockets to send

information between two processes. The package also allows the designer to create a

multicast group, which allows a process to join a group. A message sent to the group will

be received by all group members. This implementation requires the designer to

implement a message passing protocol that will be used between processes. The message

passing protocol provides a means for the recipient process to understand what to do

with the message.

Java Remote Method Invocation is a distributed model that can be found in the

java.rmi package. It encapsulates the low level socket requirements and message

passing. A Java client application will establish a reference to a remote Java server

object and issue method calls as if the remote object resided locally. This higher level of

abstraction allows a Java client to talk with a Java remote object.

The java.sql package provides a means for Java applications to interface with

Relational Database Management Systems. The functionality provided by this package is

referred to as Java Database Connectivity (JDBC) and was introduced by Sun with Java

Development Kit version 1.1. Relational database access accounts for the majority of

client/server programs being employed by organizations. This package passes SQL

statements to a Relational DBMS via a Java Database Driver.

By using Java technologies, organizations can maximize resource utilization.

Proficient Java Developers can provide total solutions to include: developing a user

interface, networking, and database access requirements. Conventional database interface

developers are required to understand vendor specific database interface tools, and if web

based access is required, then they must understand Common Gateway Interface (CGI).

Version control is simplified with Java due to it's platform independence. A Java

database aware application is designed to run on a Java Virtual Machine, which has been

implemented on many hardware platforms and integrated into numerous web browsers.

This relieves the designers from being overly concerned about the target platform,

allowing them to focus on application functionality and efficiency. System administrators

will be satisfied because application deployment requires minimal client configuration,

and can be downloaded via an application installation applet. The client downloads the

application or applet, and depending upon how the database system was designed, may

not be required to install any database specific drivers.

B. RESEARCH OBJECTIVES

Java technologies are promising but are still immature. Enterprises are just

beginning to exploit the potential of using Java in distributed applications. This thesis

will study three approaches to using Java technologies to interface with a relational

DBMS. We will first examine how JDBC can be utilized to access various relational

DBMS. The thesis will then focus on how JDBC can be used with various networking

technologies to establish a distributed database aware system. Part of the analysis of each

approach will be to develop a working prototype which can be used as a basis for an

actual implementation and for further evaluation of the potential for Enterprise Java

technologies.

The primary objective of this thesis is to explore how Java technologies are used

to access relational databases. Other concerns are to assess the functionality and the ease

of using the JDBC interface. In order to develop a client/server system we are going to

assess how a designer can implement a Java solution in a distributed environment using

Java sockets, Remote Method Invocation and through a middleware solution. We plan on

using and assessing two middleware JDBC drivers: Borland's DataGateway and

Symantec's dbAnywhere, to determine how effective they are in connecting Java client

applications to relational DBMS's.

C. SCOPE

The scope of the thesis will be to determine the effectiveness of Java technology

to meet interface designers, system administrators, and users requirements in accessing a

relational data base management system. The first phase of this thesis is to develop an

understanding of the JDBC classes and methods provided in the java.sql package. The

next phase is to create an evaluation client/server environment for testing various

implementations of connecting to a DBMS. This phase will include installing and

configuring both local and remote database management systems such as Microsoft

Access, Microsoft SQL 6.5 and Sybase SQLAnywhere. The third phase will focus on

network connectivity issues such as using sockets, or remote method invocation to access

a remote database server. The fourth phase will be to use two existing middleware

solutions: Borland's DataGateway and Symantec's dbAnywhere and to evaluate their

effectiveness in providing a Java database aware client/server solution. Finally, a

summary of the lessons learned and recommended future work are provided.

D. THESIS ORGANIZATION

This thesis is organized into the following chapters:

• Chapter I: Introduction. This chapter gives an introduction to the problem,

motivation, purpose, and general outline of the work.

• Chapter II: Background. This chapter is intended to provide an overview of the

concepts used throughout the thesis. An explanation of relational database model,

Structured Query Language, database application programming interfaces, and

client/server model will be provided.

• Chapter III: Java Database Connectivity. This chapter describes the JDBC API

and its key classes and methods and how they interact with a client application or

database management system to provide database functionality. The four classes

of JDBC drivers are described along with the advantages and disadvantages of

using each to link a Java application to a relational database. Once a solid

understanding of how JDBC can be used to interface with relational databases, the

next phase is to assess various ways of connecting to the database server.

• Chapter IV: Socket and JDBC. This chapter will provide an overview of using

Java sockets to provide a low level communication link between a client and a

JDBC aware server. A model is implemented using multicast sockets replicating

a distributed Corporate parts databases, where each department database server is

part of a multicast group.

Chapter V: Remote Method Invocation and JDBC. This chapter will employ RMI

which encapsulates the low level details of socket programming for network

communication. All JDBC drivers will reside on the server, which will interface

with three different databases: a MS Access accounting database, a MS SQL 6.5

Navy database, and a Sybase SQL Anywhere demo database.

Chapter VI: Middleware and JDBC. This chapter will look at the benefits and

limitations of using two middleware solutions: Borland's DataGateway and

Symantec's dbAnywhere. These two competing JDBC drivers allow a Java client

to talk through the middleware driver to various SQL databases.

Chapter VII: Conclusion. An overall assessment will be made on using Java

technologies to develop a connection to a relational database. The strengths of

sockets, RMI, and the use of a middleware solution will be analyzed.

Recommendations for future research will also be made.

II. BACKGROUND

In this chapter, we provide the background information necessary for readers to

understand this thesis. We will describe: relational database model, structured query

language, application programming interfaces to databases, and distributed computing in

a client server environment.

A. RELATIONAL DATABASE MODEL

A database is defined as a collection of related data. A relational model is a

database model in which all data is held in tables, which are made up of rows and

columns. Each table has one or more columns and each column is assigned a specific

data type such as integer, characters, or date. Each column has a label which identifies

the column, for example "employee id".

Each table in a database has a unique column value, known as a primary key.

Primary keys are used to uniquely identify a particular row of data. For example, a

persons social security number may be used as the primary key for an employee table. A

row of data in a table is known as a tuple or a record. So each table will contain

numerous records.

Foreign keys are used to define relationships between tables. A foreign key is a

reference to a particular row in a different table that carrys the corresponding primary

key. For example, a department table may have a manager column, which contains the

social security number of the manager. This column represent a foreign key to the

primary key, social security number, of the employee table. A table can be related to one

or more tables based upon the relationships between primary keys and foreign keys.

B. STRUCTURED QUERY LANGUAGE

Structured Query Language is a declarative language that is used to manipulate

relational databases. SQL is a standard for relational database operations, not a

communication protocol. It has no knowledge about how the database engine retrieves or

processes the SQL statement. This results in a natural separation between the database

management system that manages the data, and the client which determines what data to

manipulate.

The ANSI standard for SQL (ANSI X3.135.1) defines level 1 and level 2

compliance. Level 1 consists of a Data Definition Language (DDL) and Data

Manipulation Language (DML). The DDL includes functions such as CREATE,

ALTER, PRIMARY KEY and FOREIGN KEY. DML extends that functionality to

include SELECT, INSERT, DELETE, which operate on rows and columns within a table.

Level 1 also defines a cursor capability that can be used by a program for processing

rows one at a time. Level 2 compliance consists of Level 1 and the Data Command

Language (DCL) commands. DCL includes COMMIT, ROLLBACK, and GRANT,

which control security, integrity, concurrency, and recovery of the database [Ref. 22].

1. Basic SQL Statements

This section provides a sample of basic SQL commands that are used to

manipulate a database.

a. Create Table

A two dimensional table is used to abstractly view data. Each table has a

name and attributes of various data types, such as character, date or integer. v The

attributes represent the column labels associated with the table. The following SQL

statement creates a table whose name is my Table, which contains two attributes: name, of

type character with a maximum length of 40 and dept, of type integer.

CREATE TABLE myTable (name CHAR(40), dept INT)

b. Insert

The SQL insert operation inserts data into an existing table. The user must

specify the table name, the column names, and the corresponding values to be inserted

into the table.

INSERT INTO myTable (name, dept) VALUES ('Fred', 23)

c. Update

Update is used to modify existing information in a table. The following

example updates the dept field for any tuple with a name of Fred in the table, myTable.

If multiple tuples with the name of Fred exist, they all will be modified.

UPDATE myTable SET dept = 28 WHERE name = 'Fred'

d. Delete

This command removes an entire row (tuple) from the specified table. It

can also be used to remove an entire table. The following sample would delete any tuples

that have a dept identifier of 23 from my Table.

DELETE FROM myTable WHERE dept =23

e. Select

Select statements are used to extract data from various tables based upon

search criteria, returning the result set.

SELECT dept FROM myTable WHERE name = 'Fred'

2. Processing a SQL Statement

SQL statements can result in computationally expensive function calls. For

example, a complex join operation between two or more large tables. It is important that

system designers have a general understanding of how a database management system

processes an SQL statement. To process an SQL statement, a DBMS performs four basic

steps: Parse the SQL statement, Validate the statement, Generate an Access Plan, and

Execute the Plan.

a. Parse the SQL Statement

The DBMS first parses the SQL statement. It breaks the statement up into

individual words, called tokens, makes sure that the statement has a valid verb and valid

clauses, and so on. Syntax errors and misspellings can be detected in this step. Parsing a

SQL statement does not require access to the database and typically can be done very

quickly. It ensures the SQL statement is in the database specific format. This phase

ensures that the statement is syntactically correct. It is not concerned with the semantics

of the statement, the parameters such as table names or types. It is only ensuring the

statement is in the correct SQL format.

b. Validate the SQL Statement

The DBMS validates the statement. It checks the statement against the

system catalog. The system catalog contains database metadata, including table names,

9

attributes and types. This phase ensures the statement parameters are semantically

correct. Do all the tables named in the SQL statement exist in the database? Do all of the

columns exist and are the column names unambiguous? Does the user have the required

privileges to execute the statement? Certain semantic errors can be detected in this step.

c. Generate an Access Plan

The DBMS is responsible for managing the data stored in the database. In

this phase, based upon the statement, the DBMS generates an access plan. The access

plan is a binary representation of the steps that are required to execute the statement. The

DBMS optimizes the access plan. It explores various ways to carry out the access plan.

Can an index be used to speed a search? Should the DBMS first apply a search condition

to Table A and then join it to Table B, or should it begin with the join and use the search

condition afterward? Can a sequential search through a table be avoided or reduced to a

subset of the table? After exploring the alternatives, the DBMS chooses one of them.

Optimization is a very CPU-intensive process and requires access to the

system catalog. For a complex, multi-table query, the optimizer may explore thousands of

different ways of carrying out the same query. However, the cost of executing the query

inefficiently is usually so high that the time spent in optimization is more than regained in

increased query execution speed. This is even more significant if the same optimized

access plan can be reused to perform repetitive queries. [Ref. 19]

d. Execute the Access Plan

The DBMS will execute the access plan, producing a result set that can be

passed to the user.

3. SQL Techniques

There are various techniques that can employ SQL statements to process a users

request. This section will briefly present embedded SQL, stored procedures, and call

level interface. The implementation details of the following are usually specific to each

DBMS.

a. Embedded SQL

Embedded SQL allows the use of SQL statements within a host

language, such as C or C++. The SQL Statement can be static or dynamic. Static SQL is

10

effective if the data access can be determined at program design time and is used when

speed is important.

Each SQL statement starts with an introducer and ends with a terminator,

which serves as a flag. The code is processed by a SQL pre-compiler (provided by the

DBMS vendor), which separates the source code and the SQL request. The pre-compiler

substitutes calls to proprietary DBMS routines that provide the run-time link between the

program and the DBMS. The revised source code is then compiled and ultimately linked

with the proprietary DBMS library producing the executable.

The SQL requests that were extracted from the program form a database

request module, which is processed by a binding utility. This utility examines the SQL

statements, parses, validates, and optimizes them, and produces an access plan for each

statement. Because the SQL Statement is hard coded, this processing only needs to occur

at compiler time, not at run time, resulting in faster run time query execution.

Dynamic SQL is effective when the data access cannot be determined in

advance, such as allowing a user to enter a SQL Statement in which the results will be

displayed in a grid object. The application uses a flag, such as a question markas a place

holder for parameters that will be supplied latter. The SQL statement with the embedded

flags is then sent to the DBMS, via a PREPARE (string name) method. This allows the

DBMS to parse the string, and prepare an access plan.

When the user enters the input parameters in the client program the

application will call EXECUTE (string name), passing the DMBS the valid parameters.

The DBMS can then execute the query and provide the result set back to the user. This

technique is not as fast as Static Embedded SQL, because of the need to bind the input

parameters.

b. Stored Procedures

Another SQL API is to use stored procedures. A stored procedure is pre-

compiled SQL code that resides on the database server. Stored procedures take input

parameters and return a result. A number or procedures can be packaged to form an SQL

Module which can be stored in the DBMS or linked to the application. A module

provides logical separation of SQL statements and the programming language/statements.

Stored procedures are a form of query optimization. They are used for

efficiency, for SQL statements that are frequently executed and are computationally

expensive. The database administrator (DBA) creates and stores the procedures in the

DBMS. Once they are stored, those procedures can be invoked by a client. So instead of

11

submitting a SQL statement, the client will simply invoke the stored procedure the DBA

has already defined. The database management system can develop, optimize and store

an access plan for executing the stored procedure, therefore decreasing response time

when the client invokes the procedure because the access plan will not have to be

regenerated. Stored procedures can also reduce network congestion, by returning only

the result set of an operation rather than entire tables that the client may further process.

The server must be capable of servicing the procedures without limiting

transaction throughput and ultimately performance. It may be beneficial if a procedure is

computationally complex and network congestion is light, to have the client, which has

its own processor, process the request. The server is responsible for serving many

requests and cannot over commit to one client at the expense of not serving others.

Triggers are another form of stored procedures. Triggers are special, user

defined actions in the form of a stored procedure, that are automatically invoked by the

server based upon data related events. An example of a trigger, might be the automatic

generation of a parts order if the inventory level of widgets falls below a certain level.

c. Call Level Interface

The last SQL technique is to define a Call Level Interface, providing the

application with a library of DBMS functions that can be called by the application

program. The database aware application calls CLI functions on the local system, and the

calls are sent across the network and processed by the DBMS. The initial call may be to

establish a connection with the remote database. The application builds its SQL

Statements, places the statement in a buffer then makes a call to send the statement to the

DBMS for processing. Then the application makes a CLI call to disconnect from the

DBMS.

The CLI can be implemented through dynamically linked libraries (DLL).

Each database vendor is responsible for creating a DLL, also known as a driver to reside

on the local machine. This allows an application to access information from multiple

databases simultaneously. By employing a CLI, the DBMS implementation details can

remain hidden from the application programmer.

C. DATABASE APPLICATION PROGRAMMING INTERFACES

There are a number of ways to access a database, unfortunately there is no

standard due to the wide range of vendor specific API's and various network messaging

protocols employed. The database engines/drivers and various API's that are employed

12

are usually vendor specific, as each attempts to gain a competitive market advantage by

extending its SQL API or modifying its version of remote procedure call (RPC).

1. Proprietary Database Management System Interface

Each database vendor provides its own version of a database interface in the form

of a vendor specific API. The DBMS usually has a client utilities application which

encapsulates this API and can communicate back to the database engine. Vendors

usually support or supply some type of development tool which can be used to create a

graphical user interface (GUI) frontend to interact with the database backend. Each

database vendor provides its version of increased efficiency and functionality in an

attempt to differentiate their relational database management system. In order to take

advantage of the increased functionality offered, it is usually easier to use their version of

the database server and GUI tools.

The benefit of using a proprietary solution is faster transaction processing. This is

due to the fact that the client uses the database specific language, so no additional

mapping or translations are required. The disadvantages are that this solution usually

costs more than other solutions, and greately reduces flexibility, tying the organization to

a single vendor solution. The organization is limited to only those features available from

the vendor and may force the user to compromise on functionality.

Each relational database vendor implements the actual management and

manipulation of the database and is referred to as a database management system

(DBMS). To allow a client application to communicate with and access the database, a

DBMS specific driver or interface must be published. The driver is usually in the form of

a dynamically linked library (DLL) and resides on the client machine.

A database aware client graphical user interface (GUI) is created either by using

DBMS specific tools or a standard programming language. Rapid Application

Development (RAD) tools such as Delphi, Visual Basic, Visual C++, or Visual Cafe may

be used to design the GUI. All client applications must ultimately use the DBMS specific

driver to interact or communicate with the database engine, which resides on the server.

The following figure represents how a client would access a remote database. The

database aware client application will load a database specific driver. The client will use

Structured Query Language (SQL) interface to communicate with the local DMBS driver.

Different relational databases provide different types of SQL APIs, or extend existing

standards to provide market differentiation, so the SQL statement entered by the client

must be understood by the DBMS specific driver or the driver will be responsible for

13

mapping the SQL statement into a format understandable by the server database engine.

The driver passes the request down the stack to the DBMS specific transport layer which

transmits the request to the remote database engine across the network. The database

transport layer is responsible for establishing and managing the network connection with

the remote database engine. The DBMS engine then processes the SQL statement and

returns a result.

Client Server

f~- --"]

DbAware
Client

Application s
Database

DBMS Specific
Driver

DBMS Specific
Engine

SQL Statement
Transport Layer Transport Layer

Figure 1: General Database Access

Vendors usually provide multiple protocol stacks with the client driver. The

stacks are responsible for formatting the SQL request into the vendor specific format, and

transmitting request across the network. The transport layer may implement a vendor

specific transport protocol or support a common transport interface (TCP/IP or Named

Pipes). By encapsulating a communication layer, the DBMS driver that resides on the

client provides the mechanism to communicate with the server over a network. The

communication layer will implement some form of Remote Procedure Call (RPC) to send

the SQL statement to the database engine and return the results.

2. Open Database Connectivity

"Open Database Connectivity (ODBC) is a specification for a database API. This

API is independent of any one DBMS or operating system, the ODBC API is language-

independent but is usually implemented in C or C++. The ODBC API is based on the CLI

specifications from X/Open and ISO/IEC. ODBC 3.0 fully implements both of these

specifications and adds features commonly needed by developers of screen-based

database applications, such as scrollable cursors [Ref. 19]."

ODBC is designed and controlled by the Microsoft Corporation. It is the current

Windows standard SQL Application Program Interface (API). Every windows operating

system installs the ODBC32 administrator in the Windows Control Panel, to register

14

ODBC compliant drivers as they are loaded on the system. A ODBC compliant DBMS

specific driver that is installed on a system allows a client application to establish a

database connection and process SQL statements.

To allow an ODBC enabled application access to a relational database, the

relational DBMS provides a specific driver in the form of a dynamically linked library

(DLL) which implements the ODBC API. For example, when a user installs Sybase SQL

Anywhere on his/her system, a Sybase specific ODBC driver is also installed. Users will

use the ODBC Administator Utility to configure a data source. An ODBC datasource is a

name association between a database and the vendor supplied driver. When an ODBC

enabled application connects to a specific data source, the ODBC driver manager will

map the data source name to one it maintains in its odbc.ini file. This mapping will yield

a reference to a vendor supplied driver, which will be dynamically loaded. The driver will

perform the translation of SQL statements into a vendor specific format, and pass the

statements down to its implementation of the transport layer, to transmit the request

across the network to the database engine to be processed.

The ODBC Driver Manager provides the interface to the DBMS specific driver,

which implements the ODBC API. The drivers supplied can extend the ODBC API to

offer additional functionality.

The vendor-supplied driver is responsible for connecting and disconnecting from

the data source, submitting SQL statements to the data source and correctly formatting

the request in a DBMS specific protocol. To access multiple DBMSs simultaneously, the

ODBC Drive Manager may load multiple drivers, as required by the application.

Figure 2 captures the process. Assume a client application is attempting to

establish a connection to a Sybase database called heteroSADEMO via ODBC. The first

thing that will happen is the ODBC Drive manager (odbc32.dll) will get loaded. The

Driver Manager then looks to the system odbcinst.ini file to see if a Sybase driver is

available. This file holds information about all of the ODBC drivers installed on the

system. The file will contain the following entry:

[Sybase SQL Anywhere 5.0]

Driver=c:\sqlany50\win\wod50w.dll

The driver is available and it contains a reference to the location of the vendor

specific driver (DLL) which the ODBC Driver Manager will load. It then looks to the

odbc.ini file to find an ODBC alias that matches the database name the client is

attempting to establish a connection with. The file contains all ODBC data source names

15

that have been configured on the system, via the ODBC32 administrator utility function.

In our example the file contains: heteroSADEMO=Sybase SQL Anywhere 5.0 (32 bit)

where heteroSADEMO is the data source name to the Sybase SQL database. The name

of the specific database file associated with the aliase is also maintained.

ODBC
Enabled
Client

Application

ODBC vendor specific
odbc driver
(vendor.dll)

Vendor

(odbc32.dll)

f- —^

Odbcinst.ini Translation.dll Database

Odbc.ini

Figure 2: ODBC Implementation [Ref. 26]

Once the ODBC Drive Manager has confirmed the driver and database exists, it

will pass all future references to the appropriate vendor specific driver to handle the SQL

statement.

The vendor specific driver may use a translation DLL to convert the ASCII

character set used by a Windows application, to the default character set used by the

specific database. It is also responsible for communicating with the database engine, and

passing results back to the ODBC driver, which passes the results to the ODBC client

application.

By using ODBC to provide access to a vendor specific database, the application

can only employ the SQL functions defined by the ODBC standard. As a result, the client

application may not be able to take advantage of additional functionality that the database

may be able to provide.

3. Java Database Connectivity

The JDBC API is based upon the X/Open SQL Call Level Interface. It is a Java

database access API. It allows Java client applications the ability to communicate with

relational databases and is a Java based alternative to Microsoft's ODBC API.

16

To provide Java developers immediate access to existing databases, the creators

of the JDBC API created a Java to ODBC interface called the JDBC-ODBC Bridge. This

provided immediate relational database access allowing developers to begin exploring the

API while relational database vendors created proprietary JDBC drivers. This was

necessary to gain support from the relational database community. As the technology

matured, additional Java based DBMS specific drivers appeared. Sun categorizes the

drivers into four types:

• Type 1: JDBC-ODBC Bridge: short term temporary driver.

• Type 2. Native API, Partly Java: driver is written in C, maps JDBC calls into

vendor specific language, passed to the vendor driver and processed

• Type 3. Network Protocol, All-Java Driver: a middleware solution

• Type 4. Native Protocol, All-Java Driver: JDBC calls get translated directly

into a DBMS specific network protocol, example Oracles OCI.

Chapter III of the thesis is devoted to further explanation of the JDBC API.

4. Middleware

A middleware server provides access to a number of databases via proprietary

drivers or the use of other database API's such as ODBC. Transparency is one of the

primary objectives of distributed computing and middleware database servers satisfy this

objective. Through the use of a middleware server a client will have no knowledge about

where the database information is coming from or even what DBMS is being used to

store the data. The client will only understand the middleware API and will only be able

to interact with the middleware object.

Middleware solutions provides flexibility allowing the client application to use

one protocol or interface to communicate with the middleware server yet have access to

many different relational databases. This simplifies the implementation and installation of

client software. The client only needs to know how to communicate with the middleware

object, which is handled by the middleware driver.

The server is responsible for accessing various relational databases. This means

that the middleware server must contain the database specific drivers, which can

communicate to specified databases. The overhead associated with providing this broad

support (access to multiple databases), is possible decreased performance and loss of

some DBMS functionality enhancements that a vendor proprietary solution may provide.

17

The characteristics of connecting middleware between a client and a server vary

depending on the types of server (file servers, database servers, web servers, transaction

servers), platform (software and hardware), and client requirements. According to Orfali

"Middleware is a vague term that covers all the distributed software needed to support

interactions between clients and servers. Middleware does not include the software that

provides the actual service, that is in the server's domain. It also does not include the user

interface or the application's logic -that is in the client's domain." [Ref. 10].

Figure 3 depicts a middleware server, that is capable of providing access to two

remote database management systems. In order to provide this functionality, the

middleware product must know how to communicate with each database, so it will

contain a database specific driver for each DBMS to which it must connect. The client

can only interface with the databases via a middleware driver, installed on the client

machine and must use the middleware API to send requests.

The important concept here is that the client does not ever need to know how

many or what types of databases the middleware actually communicates with. All of the

details are hidden. Databases can be merged, split, added or deleted as long as the

client/middleware interface remains unchanged. This is a very powerful capability. The

databases can be remote or local. They can be moved, or upgraded without impacting the

client application.

d
r
i
V

e
r

SQL db Middleware
server

Client

Sybase db

Figure 3: Middleware Solution

Middleware can be referred to as a gateway. Gateway is a piece of software that

causes one DBMS to look like another, accepting the programming interface, SQL

grammar, and data stream protocol of a single DBMS, and translating it to the

programming interface, SQL grammar, and data stream protocol of the hidden (target)

DBMS. Multiple drivers can reside on a gateway, or middleware server. Each database

requires a proprietary driver to access the database. If multiple clients require access to

multiple databases, client configuration would be an administrative challenge. By

18

employing a middleware server, all drivers reside on one machine instead of on every

client machine and can be easily controlled by the system administrator.

Middleware can be divided into two functional layers, the service specific

functions, and the underlying utility functions. The service specific functions are the

services that will be invoked by the client. The utility functions are the communication

stacks, RPC's, and queuing services that provide the base for the service-specific

functions.

5. Common Gateway Interface

Hyper Text Transfer Protocol (HTTP) is a stateless protocol that operates on top

of TCP/IP. An HTTP client establishes a connection with a web server and issues a

request. The server returns a response and closes the connection. HTML forms, web

pages with text fields and a submit button, are common on the internet yet web servers

are not capable of interpreting their contents. Web servers act as a conduit and pass the

content of web forms to a back end process that manipulates the form data.

Common Gateway Interface (CGI) is a protocol, that provides for the

manipulation of web forms. It allows clients to pass information to server-based

programs that generate responses in the form of dynamically created web pages. An

HTTP server listens to incoming connection requests and either returns a file or passes

the request to a CGI application. The CGI program resides on the HTTP server. Each

form page has a form tag and a submit button. The submit button will cause the browser

to gather all user input fields, package them and submit them to the URL specified in the

action command. The URL contains a host name and the directory and file name of the

CGI script to invoke. In Figure 4, the user input gets sent to the HTTP server which

identifies the CGI tag and starts the CGI process, passing it the input information. The

CGI process, parses the user input, processes it, generates a reponse HTML page (usinge

HTML tags) and passes the page to the HTTP server that forwards it to the clients web

browser.

19

Client Server

Browser

Input J

HTTP CGI

User
input

Identifies
CGI tag,

launch CGI
process.

Input
Parse and
Process
Input

 ►

Display
HTML
Page

Create
HTML
Page

^ ■

HTML j
Forward
HTML HTML

k

Figure 4: Common Gateway Interface

To handle multiple CGI executions, the HTTP server forks and runs the CGI

process. CGI is single threaded, meaning servers must create a separate process for each

request received. One of the primary limitations of CGI is that HTTP is a stateless

protocol, which means it maintains no knowledge about previous requests. As stated

earlier, a client will download a form, input the requested data, submit the form, to the

server. The server will fork the CGI process, which will service the request, generated the

dynamic HTML page, and return it to the client. At this point the transaction is complete.

In order to service another request, the client must go through the entire cycle once more,

and the system overhead associated with starting another process.

Since all CGI processes are executed on the server, limited error checking is

available on the client side and a lot of overhead is associated with executing the script.

CGI programs are generally interpreted at run-time and are slower than compiled

programs. A CGI scipt must exist for each web form that exists. Additionally when Perl

is choosen as a scripting language, designers must interface a scripted language with the

databse vendors supplied libraries. Designers must understand the CGI host scripting

language and must also understand HTML tags to format a result. If executing a database

aware CGI script, since HTTP is a stateless protocol, the database will have to be opened

and closed continuously to service the requests, which adds increased overhead and

decreased response time.

20

D. CLIENT/SERVER MODEL

Client/server is an overloaded word and can be interpreted a number of ways.

Some uses of the term represent physical partitioning of applications across computers.

For example the client computer gets services from a separate file server/computer.

According to Orfali: "The client/server model, entails two autonomous processes working

together usually over a network; client processes request specific services which server

processes respond to and process [Ref. 10]".

In this thesis we define client/server as two separate logical entities that work

together over a network to accomplish a task. The server process can reside on the same

machine as the client, or be located on a physically different machine. A client/server

implementation is different than a stand alone application. A stand alone application

does not require the services of another process, it is self sufficient. An example of a

stand alone process would be a basic text editor. As network bandwidth continues to

increase, the ability to invoke a method on a remote server is becoming transparent to the

end user, so client/server architectures are becoming more attractive. When designers use

multi-threading, the benefits of threads making remote method calls may drastically

improve the performance of an application

In the client/server architecture it is common for servers to become the clients of

other server entities. Client/server systems seeks to optimally distribute processing

activities via many-to-many relationships over different computer platforms. Each server

process provides a unique set of functions, a client process can interact with many server

processes. Each server process must be capable of simultaneously handling multiple

client requests for service. The anticipated benefit of client/server is the ability to

abstract hardware and software concerns and focus on developing and building user-

friendly, cost effective systems [Ref. 5].

One of the key requirements for a client/server model is the ability for the client

process and the server process to be able to communicate. Since it is possible for client

and server processes to be running on separate machines a common network and

communication protocol must be employed. A client process must be capable of finding

a server process, via some type of addressing protocol. For example, if TCP/IP is being

used as the network protocol, the server process may have a thread that is constantly

listening to a pre-specified port number, say 5000 for client requests.

Each server has a unique host internet protocol (IP) address for example:

131.120.1.91. The IP address plus the port number specify a TCP/IP communication

socket. A client process must know the server socket information to establish a

21

connection with the server. Once connected, the two processes must be capable of

effectively communicating through those sockets using an agreed upon communication

protocol, to pass messages back and fourth across a network.

The communication protocol for distributed client/server computing across a

network is extremely important. The client and server process must be capable of

effectively communicating: establishing network connections, passing parameters, and

various objects across a network in support of the services the server is going to provide.

All client/server systems have the following distinguishing characteristics [Ref.

10]:

• Service: Client/server is primarily a relationship between processes running

on separate or possibly the same machine. The server process is a provider of

services. The client is a consumer of services. In essence, client/server

provides a clean separation of function based on the idea of service.

• Shared resources: A server can service many clients at the same time and

regulate their access to shared resources.

• Asymmetrical protocols: Clients always initiate the dialog by requesting a

service. Servers are passively awaiting requests from the clients.

• Transparency of location: The server is a process that can reside on the same

machine as the client or on a different machine across a network. As pointed

out earlier, a program can be a client, a server, or both.

• Message-based exchanges: Clients and servers are loosely coupled systems

that interact through a message-passing mechanism. The message is the

delivery mechanism for the service requests and replies.

• Encapsulation of services: The server is a "specialist". A message tells a

server what service is requested; it is then up to the server to determine how to

get the job done. Servers can be upgraded without affecting the clients as long

as the published message interface is not changed.

• Scalability: Client/server systems can be scaled horizontally by adding new

clients, and vertically by migrating to a larger, faster server machines or multi-

servers.

• Integrity: The server code and server data is centrally maintained, which

results in cheaper maintenance and the guarding of shared data integrity. At

the same time, the clients remain personal and independent.

22

1. Two-Tier Client/Server Architecture

The functional units of the client/server model consist of a client process and a

server process. An interface is declared that specifies what services the server process can

provide to the client and what the parameters, and return types will be. The services

could be various methods or functions such as:

public boolean setConnection(String name, String pass,

String database);

public Vector executeQuery(String query);

In a two-tier environment the server process is capable of providing the service

and does not require the services of another server. Figure 5 shows a two tier

client/server model. The client uses the interface to interact with the server process. The

server process can be running locally or on a remote system. The gray part depicts the

interface, that declares what methods or services the server process can provide. The

interface may also handle the communication details to submit a request across a

network. The black boxes depict business logic. Business logic is a set of rules, that

enforce or implement an organization's policies. The rules may be located on the server,

client or both.

Client
Process

ED
request service

return response

Server
Process

o service request

[~] = interface

■ = business logic

Figure 5: Two-Tier Client/Server

One issue that makes the client/server model attractive is that an organization can

store its business logic on a central server. Business logic is composed of various rules

that enforce the company's policies. For example, if an organization requires an expense

report for any expenditures over $20. The logic can be enforced on the server or on the

client. As with all corporate policies, the rules may change. A new manager decides that

• 23

$20 is to low, and that an expense report will only be required for expenditures over

$100.

If the logic was enforced in the client application, the organization will have to

generate a new client application and distribute it throughout the organization. Since

there are numerous client applications, which may be dispersed throughout the world,

this can be an expensive endeavor. Also since the business logic can be fairly complex,

and lengthy, enforcing it in the client will make the client code larger than it otherwise

could be. So by encapsulating all business logic on the server, organizations can change

the logic at one location, once again decreasing administrative costs.

A simple example of a two tier client/server application is MS SQL 6.5 Client

Configuration Utility. This application is used to configure a client process to

communicate with a server process.

2. N- Tier Client Server System

Since servers can become clients of other servers, ultimately what exists is the

potential for multiple tiers. Each server provides an interface to the services it can

provide. Since the implementation details of those services are transparent to the client

application, the server may use the services of another server process to actually execute

a method or perform a function.

The following figure depicts a three tier implementation of a client server model.

A database aware client is making a database request via a middleware server that uses

the database management system to actually process the request.

Client
Process

Application
Server

DataBase
Server

request service

return response

request service

return response

service request

database

= business logic E3 = interface = services

Figure 6: N-Tier Client/Server Model

24

Tier one of this system is a client process that can only interface with the

middleware server. It contains no business logic, so it can be considered a thin client. A

thin client is a client application that is as small as possible, containing minimal business

logic.

The second tier, consists of an application server. The application server

implements the interface depicted by the dark gray bar. The middleware server, also

contains the organization's business logic, which is used to enforce policy. In this

example, the application server, will utilize the interface of the database server. This

interface may include a database driver, which can process requests into a format

understandable by the database server (engine), and is responsible for the transport layer,

or the network protocols to effectively communicate with the database engine.

The database server, is the third tier in this example. It provides the

implementation details of the methods made available in its interface, and is once again

depicted by a dark gray bar. It also is responsible for the implementation of some

business logic. For example, the DBMS maintains and enforces user access to various

database operations. This logic is usually defined by the Data Base Administrator. The

Database Server will service the request and transmit the results back to the application

server, which may perform some additional manipulation before sending a result back to

the client. Spreading the functions among multiple tiers provides scalability, faster

performance, robustness and flexibility. By implementing a middle tier, data can be

integrated from multiple resources [Ref. 10].

25

26

III. JAVA DATABASE CONNECTIVITY (JDBC)

In this chapter, we provide the details of Java Database Connectivity which is

implemented in the java.sql package of JDK 1.1. The JDBC API will be covered,

providing an explanation of key classes, and methods used. For each method a short

example will be presented. The examples presented represent only a small subset of the

available methods found in the java.sql package. Consult the JDBC API reference for

additional information.

Java Database Connectivity (JDBC) is an application program interface

developed by Sun Microsystems, that allows a Java program to communicate with a

database server using Structured Query Language (SQL) commands. It provides Java

programs the ability to communicate with relational database management systems

similar to Microsoft's Open Database Connectivity (ODBC) API [Ref. 13]. The JDBC

Application Programming Interface is found in the Java.sql interface, of JDK 1.1. and

contains eight interfaces and six classes as can be seen in the following table.

Interfaces Classes Exceptions
CallableStatement Date DataTruncation

Connection DriverManager SQLException

DatabaseMetaData DriverPropertylnfo SQLWarning

Driver Time

PreparedStatement Timestamp

ResultSet Types

ResultSetMetaData

Statement

Table 1: JDK1.1 SQL Package

An explanation of all the classes and interfaces is beyond the scope of this thesis,

so this chapter will explain and demonstrate the core classes and interfaces which are:

DriverManager, Connection, PreparedStatement, and ResultSet. Each of the core classes

corresponds to a critical phase of database access[Ref. 13]. The client cannot continue if

one of the phases fails by throwing an exception. For example if an appropriate JDBC

driver cannot be loaded, then a client cannot establish a database connection, because the

27

Java application will not be able to talk to the backend database engine. If the client

cannot establish a connection then it cannot create a statement object, which uses the

connection to transmit a query for processing.

Figure 7 provides an abstract view at the key interfaces included in the java.sql

package. The DriverManager, loads the JDBC driver that can communicate with the

DBMS, for example: the JDBC/ODBC bridge "'sun.jdbc.odbc.JdbcOdbcDriver". Once

the driver is properly loaded the Java client application can establish a connection by

using: driver.getConnection, which returns a connection object. The client then uses the

connection object to create a statement object. A Statement object moves the SQL string

to the database engine for preprocessing and eventually execution, which may or may

not return a result set object.

DriverManager Statement executeQuery
ResultSet ►

c

i
jetConnection

I
preparedStatement

y r executeQuery
Connection S^ h, PreparedStatement ^

ResultSet w Q w

preparedCallr"v

1 r
CallableStatement

Figure 7: JDBC Object Relations [Ref. 13]

Before explaining the interfaces and class methods used in this research the

following code demonstrates the entire process. A Jdbc:Odbc driver is explicitly loaded

followed by establsihing a connection, submitting a SQL Statement and processing a

result set.

28

try {
//set the connection
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

//connection paramters
String user = "dba";
String password = "sql";
String dbase = "jdbc:odbc:acctsDatabase";

//get connection object
Connection con = DriverManager.getConnection(dbase,

user, password);

//get statement object
Statement stmt = con.createStatement();

//execute the SQL statement
ResultSet result = stmt.execute("select partType from

parts");

//display the result
while(result.next()){

String part = result.getString("partType");
System.out.println("Part Type: " + part);

}

//close the connection
con.close();

}

A. DRIVERMANAGER CLASS

The DriverManager class contains methods that are used to manage a set of JDBC

drivers. Each JDBC driver must provide a class that implements the Driver interface,

which is used by the DriverManager. As part of initialization, a program can explicitly

tell the DriverManager what driver to load, by using the Class.forName(<driver name>)

call. If the user does not use this call and attempts to create a connection object the

DriverManager class will check with each registered driver to see if it can connect to the

given URL. If more than one driver can connect to the URL, the DriverManager will

invoke the first compatible driver encountered.

Connection objects are generated from the class DriverManager. When

getConnection is called, the DriverManager will attempt to locate a suitable driver from

those loaded at initialization and those loaded explicitly using the same classloader as the

29

current applet or application. The URL provided to the getConnection function names the

driver to be used to establish the connection. The connection protocol supported by Sun

is:

jdbc:<subprotocol>://<host>:<portnumber>/<datasource>

For example: String url = "jdbc:dbaw://131.120.1.91:8899/acctsDatabase" uses

jdbc protocol with a dbaw (dbAnywhere) sub protocol to connect to port 8899, on host

131.120.1.91, and then presents the data source name acctsDatabase to the port to locate

the specific database. The DriverManager uses this URL to find a registered Driver

which can connect to the source. The driver manager is used to establish a connection to

a datasource.

public void setConnection()
{

//explicitly load the driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

//connection paramters
String user = "dba";
String password = "sql";
String dbase = "jdbc:odbc:acctsDatabase";

//get connection object
Connection con = DriverManager.getConnection(dbase,

user, password);

}//end setConnection

B. CONNECTION INTERFACE

A connection object represents a connection of your application to a database and

is used to execute the next phase of database access, creating a statement object which

will allow the user to execute a SQL command. It can also be used to commit a change

to the database, as well as rollback.

A transaction is a set of statements that have been executed and committed or

rolled back. By default all SQL statements are set for automatic commitment, so each

individual statement is committed to the database upon it's completion. This can be

disabled by using the method setAutoCommitment(false), which requires the designer to

30

explicitly invoke connection.commit(), to commit the transaction to the database. This is

effective if the user wants to make a number of changes and to commit them all at once.

To rollback, (remove all the changes since the last commit), invoke

connection.rollback(). The following section provides an overview of some of the key

methods that exist in this class.

1. Statement

There are three statement objects of which the inheritance hierarchy is: Statement,

PreparedStatement and CallableStatement. To obtain a statement object the user can call

connection.createStatement(). The statement object can be used to execute a SQL

statement. This type of statement object is useful for SQL statements that will only be

generated once. For example:

Statement stmt = con.createStatement();
stmt.execute("CREATE TABLE parts (" +

"partID SMALLINT NOT NULL, " +
"partType CHAR(20) NOT NULL) ");

con.commit();
stmt.close() ;

2. PreparedStatement

To pass in-parameters or to increase efficiency for a SQL statement that will be

executed a number of times, use a PreparedStatement(). A PreparedStatement takes in-

parameters which can be passed into a SQL statement after the statement has been

prepared by the DBMS server. The server formulates and optimizes an access plan, that

can be re-used multiple times. The access plan is executed when the client uses the

execute() command. This increases performance, because the DBMS does not need to

incur the overhead associated with generating an access plan for every statement. Not all

DBMS's can support this option, in which case the code executes as a statement object.

For example prepared statements cannot be used with the Text File ODBC Driver.

To bind input parameters, setXXX is used where XXX can be any primitive type

or a String. The setXXX methods for setting IN parameter values must specify types that

are compatible with the defined SQL type of the input parameter. For instance, if the IN

parameter has SQL type Integer then setlnt should be used. Columns can be referenced

by column index, which begin with one, for greater efficiency, or by column name for

31

convenience. The following example demonstrates how a PreparedStatement can be

effectively used to populate a table with 100 items, each with a unique partlD.

//set auto commit to false
con.setAutoCommit(false);

// insert 100 parts into parts table
PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO parts (partType, partlD, quantity) " +
"VALUES (?, ?, ?)");

pstmt.setString(l, "Tire");
pstmt.setlnt(3, 4);

for (partlD = 1; partlD <= 100; partID+){
pstmt.setShort(2, partlD);
pstmt.executeUpdate();

}

con.commit();
pstmt.close();

3. Callable statement

CallableStatement extends PreparedStatement and is used to execute stored

procedures. Stored procedures are blocks of SQL code that are stored in the database and

executed on the server. This increases efficiency for SQL Statements that are executed

often, by reducing the overhead of regenerating an access plan. The DBMS generates

and stores the access plan once, and other applications can use the procedure. Stored

procedures need to be supported by the database, and the exact syntax may differ

between vendors.

JDBC provides a stored procedure SQL escape that allows stored procedures to be

called in a standard way for all RDBMS's. This escape syntax has one form that includes

a result parameter and one that does not. If used, the result parameter must be registered

as an OUT parameter. The other parameters may be used for input, output or both.

Parameters are refered to sequentially, by number. The first parameter is 1. The

following example of creating a stored procedure is from JavaSofts Java DataBase

Programming Tutorial [Ref. 27].

32

Stmt.execute("CREATE PROCEDURE getDailyTotal " +

"@day char(3), @dayTotal int output " +

"AS " +

"BEGIN " +

SELECT @dayTotal = sum (cups) " +

FROM coffeeData " +

WHERE day = @day " +

"END");

If the designer knows there are no output parameters, but input parameters are

required use PreparedStatement. If there are no input and output parameters Statement

can be used. Once the stored procedure is created, it maybe executed with the following:

CallableStatement cstmt = con.prepareCall("{call

getDailyTotal (?, ?) }");

cstmt.setString(1, "Mon");

cstmt.registerOutParameter(2, Java.sql.Types.INTEGER) ; _

cstmt.executeUpdate();

System.out.println("Total for Mon is " +

cstmt.getlnt(2));

IN parameter values are set using the set methods inherited from

PreparedStatement. So in this case an in parameter is "Mon". The type of all OUT

parameters must be registered prior to executing the stored procedure so

registerOutParameter(2, java.sql.Types.INTEGER), then execute the statement. The get

method must be used to retrieve the OUT parameters. Columns are referenced by index

for efficiency in this example. A Callable statement may return a ResultSet or multiple

ResultSets.

4. DatabaseMetaData

Another key method provided by the connection class is getMetaData(), which

returns a DatabaseMetaData object. Metadata is data about the database and its contents

can be discovered at run time. Each database maintains a dynamic catalog that describes

itself to include the tables, views, privileges and capabilities of the database. This object

33

is able to provide information describing the database tables, its supported SQL grammar,

its stored procedures, and the capabilities of this connection. The DatabaseMetaData

interface has a total of 133 methods [Ref. 10]. For example, to get the names of all the

tables in a database the following method could be used:

getTables(String catalog,

String schemaPattern,

String tableNamePattern,

String types[]) throws SQLException

A schema describes a group of related tables and access permissions. A catalog

describes a group of related Schemas. There are a number of types to include "TABLE"

and "VIEW". To use the method to provide a list of available tables from a database:

DatabaseMetaData dmd = con.getMetaData();

String[] types = { "TABLE" };

ResultSet rs = dmd.getTables(null, null, "%", types)

The ResultSet contains information about all tables in the database, for example

to get the table name, which is contained in the third argument, use String name =

rs.getString(3). This information is important for code portability. To populate a drop

down menu, this information can provide the table choices dynamically.

C. STATEMENT INTERFACE

A statement object is a container for executing SQL statements. This represents

the next phase of database access, the execution of a SQL statement. One statement

object can be reused many times to execute a number of SQL Statements. There are

three functions that can be invoked to execute the SQL statement depending upon the

type of SQL operation.

1. Execute

The method boolean execute (String sql) is used to execute dynamic SQL

statement when the designer does not know if the statement will be an update, or query

operation. The method returns true if a ResultSet was generated via a query. This

indicates to the designer that the operation was a select, now the calling method may

34

process the result set. If the method returns false, this indicates that the statement was an

update, and returns the number of rows affected by the statement. In both cases the

results can be obtained as follows:

ResultSet result = statement.getResultSet() '

int rowsUpdated = stmt.getUpdateCount().

When the designer knows what type of SQL Statement is being executed it is

more appropriate to use executeQuery or executeUpdate.

2. Execute Query

The method resultSet executeQuery (String sql) should be used when the client is

executing a SELECT SQL Statement and is prepared to process a ResultSet. Select

statements are used to extract data from various tables based upon search criteria. The

ResultSet object returned is never null. The rows in the result are accessed in order, but

the elements in the various columns can be accessed in an order. It is recommended that

columns be accessed from left to right and that each row be read only once.

ResultSet result = stmt.executeQuery("SELECT * FROM

Parts");

3. Execute Update

The method int executeUpdate(String sql) is used to execute a SQL INSERT,

UPDATE or DELETE statement. It returns a row count representing the number of rows

affected by the SQL statement or zero for SQL statements that return nothing. The

following code demonstrates the various update functions (Create, Insert, Update,

Delete). For each of the following examples assume that "stmt" is a valid Statement

object.

a. Create Table

A two dimensional table is used to abstractly view tables. Each table has a

table name and has various attributes of various types which represent the column

headers. The following example depicts the SQL string for creating a table called

invoices, that contains two attributes: id and supplier.

35

stmt.executeUpdate("CREATE TABLE invoices(id int,

supplier char(20))");

b. Insert

Inserts data into a pre-existing table. User must specify the table name,

the column names, and the corresponding values to be inserted into the table.

stmt.executeUpdate("INSERT INTO invoices (id,

supplier) VALUES (2033, 'DOL') ");

c. Update

This SQL command is used to update a specific field of a table.

stmt.executeUpdate("UPDATE parts SET qnty = 5

WHERE part = 'brake pad' ");

d. Delete

This command removes one or more rows, or tuples from the specified

table. The following example would delete all tuples where part is muffler from the parts

table.

stmt.executeUpdate("DELETE FROM parts WHERE part =

'muffler' ");

D. RESULTSET INTERFACE

A ResultSet object captures the information returned from a SELECT Statement.

The object maintains a cursor that points to the current row of data, which can be

traversed via the next() method. This object provides methods that allow access to the

results of a query. A ResultSet is automatically closed by the Statement that generated it

when that Statement is closed, re-executed, or is used to retrieve the next result from a

sequence of multiple results.

36

1. Get Meta Data

The ResultSetMetaData getMetaData() method returns a ResultsetMetaData

object which can provide detailed information about the ResultSet, to include column

information. This information is useful in presenting the ResultSet in an interface. The

following lists only a few of the ResultSetMetaData methods, see Interface

java.sql.ResultSetMetaData API for additional methods.

ResultSetMetaData rsmd = rs.getMetaData();

int columnCount = rsmd.getColumnCount();

int columnWidth = rsmd. getColumnDisplaySize (ix),;

String columnName = rsmd.getColumnName(ix);

int javaSQLType = rsmd. getColumnType(ix)

2. Get Type

The XXX getXXX method is used to get results from a ResultSet. If getString is

used, then it will return a String. So based upon the column index, it will convert the

type into the Java specified type by the getXXX. Not all conversions are legal so the

correct conversion should be used. The method is overloaded to also accept a String, the

column name, as an in parameter. Column names used as input to getXXX methods are

case insensitive.

3. Next

There is a "row cursor" in the result that points to the current row. The method

result.next(), moves the cursor to the next row, and returns true if the row exists. The

ResultSet object controls access to the row results of a given statement. The method must

be called to initialize the cursor to point to the first row of data. For example to step

through a ResultSet result, the next() method would be used as follows:

String part;

int quantity;

while(result.next()){

part = result.getString("part");
quantity = result.getlnt("qnty");

System.out.println(part + " | " + quantity);

37

}

The application designer needs to know what data type is included in the result set,

and the name of the column to access the results. Once again, the designer can reference

the column containing the data by name or by index. To get the results a data conversion

from the SQL return type to the desired Java data type is required. The getXXX method

must be used to get various SQL data types.

For each getXXX method, the JDBC driver must convert between the database

type and a Java equivalent. An invalid data conversion will result in an exception. Some

SQL types have a direct Java equivalent, such as SQL Integer to a Java int. Several SQL

types can be converted to a Java equivalent, such as SQL char, varchar, and longvarchar

to Java string type.

E. JDBC DRIVERS

Database drivers provide the implementation of the abstract classes provided by

the JDBC API. The driver resides on the Java client machine and is used to establish a

connection to a relational database. The JDBC driver can be a JDBC/ODBC bridge, a

middleware protocol library, or a native database driver. The driver provides the "black

box" interface, that accepts JDBC input from the Java application, and understands the

vendor specific relational database language and network protocols. It accepts the JDBC

input from the client application, translates it to a vendor specific protocol, and uses a

vendor supporting networking protocol to transmit the request across the network.

In order to pass the JDBC compliance tests, drivers are required to support at least

ANSI SQL 92 Entry Level (SQL2). There are four categories of JDBC drivers as

designated by JavaSoft.[Ref. 12] The drivers are:

. Type I. JDBC/ODBC bridge: Available with JDK 1.1, uses existing ODBC

vendor drivers. The slowest driver to translating JDBC calls to ODBC calls to

vendor specific calls.

• Type II. Native-API, partly Java driver: Translates JDBC call into language

understood by the specific DMBS client driver, then invokes the client driver for

further processing. Faster than Type I, slower than Type IV. Can only interface

with specific DBMS.

38

• Type III. Network-protocol, all-Java driver: Provides flexibility, may use

ODBC/JDBC bridge or native protocol drivers to access DBMS's. Not as fast as

Type II or IV drivers. Simplifies administration, all DBMS specific drivers are

loaded on the middleware server machine. Clients only requires the network

protocol interface and middleware API to communicate with the TYPE III driver.

• Type IV. Native-protocol, all-Java driver: Provides the fastest access, mapping

the JDBC calls directly into a DMBS protocol. Can only interface with vendor

specific DBMS and can be expensive. Requires each client machine to have a

driver, so increases administrative burden of managing licenses.

1. JDBC/ODBC Bridge (Type I)

The JDBC/ODBC Bridge (Figure 8) was designed to take advantage of the large

number of ODBC enabled drivers. The bridge was intended to provide an initial solution

until database vendors could produce their own vendor specific JDBC drivers. Basically

the bridge converts the JDBC calls into ODBC calls. The ODBC driver manager, will

invoke the database vendor specific ODBC driver, and pass the calls to database driver

for further processing.

The client side application or applet uses the JDBC API to load the

"sun.jdbc.odbc.JdbcOdbcDriver". This driver translates the Java SQL statements into

and ODBC format, then invokes the ODBC Driver Manager (odbc32.dll) which refers to

the odbc.ini file that contains a data source name and vendor specific driver it is

associated with. The vendor specific driver or dll then translates the ODBC call into a

vendor specific call, and sends the request across the network to the database manager.

The process is reversed when a response is sent from the database manager back to the

client application.

39

Database Aware
Application

JDBC API

DO

CQ

U
DQ
Q
O
O
m
Q

IM
OJ > '-^ -.— >n

D
B

C
D

(S

Q
L
 6

^ w ^ P

O

Microsoft
DataBase

«—► U 1>
> J=

Q £

u 00

Sybase
DataBase

Figure 8: JDBC/ODBC Bridge

One of the disadvantages of using the JDBC/ODBC Bridge is the overhead

associated with the call mappings. Java applications can be written using the JDBC API

but all calls must be filtered through the bridge and translated into ODBC calls that are

understood by the respective relational databases. The call must go from JDBC through

the bridge to the ODBC driver and finally from ODBC to the native client-API, say

Sybase SQL Anywhere in this example, then to the database.

A JDBC/ODBC bridge is effective for an application server. A middleware

server provides the database access, so all ODBC drivers reside on that machine. The

client makes a call to the application server, which establishes the database connection

and returns a string or data stream to the client. The application server used the JDBC

API to interact with the database. The client does not use the JDBC API at all. This was

the implementation used in our socket and remote method invocation models that follow

in Chapters IV, and V respectively.

2. Native-API, Partly Java Driver (Type II)

Type II drivers convert Java calls into vendor specific calls. The drivers are

usually written in C, accept the Java calls then map them to vendor specific calls. The

call then gets processed by the vendor specific driver, translating it into the DBMS's

specific query language and communication protocol. This is a partly Java driver, that

requires a vendor supplied library to translate JDBC functions into the DBMS's specific

40

query language, such as Oracle's OCI [Ref.23]. Type II Drivers bypass the ODBC

translation, so are faster than Type I drivers.

These drivers usually cost more than other drivers and reduce flexibility. The

performance increase may warrant employing native drivers, if the organization is

committed to a single DBMS.

3. Network Protocol, All-Java Driver (Type III)

The network Type III driver (Figure 9) translates JDBC calls into a database

independent network protocol, and passes this request to a middle tier server which then

translates the request into a DBMS specific protocol. Type III drivers are attractive for

Internet/Intranet based multi-user data intensive applications (requiring access to multiple

databases). A Type III driver can be written in Java. The cost associated with writing the

driver in Java is decreased performance time since Java is slower than compiled

languages like C/C++. The advantage of being written in Java is that the server can use

any JDBC driver to connect to the target database(s). In Chapter VI, we use a type III

Middleware driver to connect our Java client application to various relational databses.

Database Interface
Application
(JDBC API) >

Java Virtual Machine

Heterogeneous OS

z §
00 -g
<» t. vi ?**
re c

JO <
5x>
re T3
Q w

re

00

vd

a
00

SQL
Anywere

Server
<—► SQL

DataBase

<—►
MS SQL

6.5
Server <—► SQL 6.5

DataBase

MS Access
DataBase

Figure 9: Net Protocol All Java Driver

To communicate with the Type 3 server a client class file must be installed on the

client machine. This class file can be downloaded with the applet or application. For

41

example, when dbAnywhere is used as the middleware server, the client needs to have

the dbaw.zip archive to communicate with the dbAnywhere Server. The Database Server

manages the transfer of information and calls between the Client and the DBMS. The

bridge transforms Java calls to DBMS protocol and the DBMS responses back into Java.

The Type III driver contains a number of vendor specific drivers, or can use the

ODBC/JDBC driver to provide database access. The bridge can connect the client to

local databases, which must reside on the same machine as the middleware server, such

as MS Access, or to remote databases such as Oracle, MS SQL Server, SyBase,

InterBase, or IBM DB/2, stored on another machine.

As can be expected, a Type III driver is slower than other JDBC drivers. In an

evaluation by Mukal Sood [Ref. 23], the average connection time for a Type IV driver

was approximately 1.1 seconds, and the fastest for a type III driver was 8.4 seconds. The

benefit of using a Type III driver is flexibility, installation, and database administrator

maintenance. Type III drivers, can encapsulate Type IV drivers. For example,

dbAnywhere provides proprietary database access for Oracle 7.x.

4. Native-Protocol, All-Java Driver (Type IV)

Type IV JDBC drivers convert the JDBC calls directly into the network protocol

used by the specific DBMS. These drivers can be written entirely in Java, and can

provide just in time delivery of applets. Type IV drivers provide for the best database

access because of the direct translation, unfortunately they can only be supplied by the

vendor and can only interface with the vendor specific database. For example, Sybase

j Connect is a Type IV JDBC driver written entirely in Java and communicates directly to

Sybase data sources such as Sybase SQL Anywhere. It uses Sybase's Tabular Data

Stream (TDS) as the communication protocol between Sybase clients and servers.

42

Database
Interface

Application
(JDBC API)

o
c c o
U

TDS
4 ^

SQL
Anywere

Server
■#■ -^

Java Virtual Machine

Heterogeneous OS

SQL
DataBase

Figure 10: Native Protocol JDBC Driver

The advantage of a Type IV driver is increased performance. The number of

translations is reduced to one, which directly translates the call into a DBMS specific call.

The disadvantage of such a solution is the driver is supplied by the vendor and is

proprietary and therefore comes with a higher cost.

5. Driver Selection

The selection of which type of driver to employ depends upon a number of

factors: number of databases requiring access, performance requirements, financial, and

system administration requirements.

F. CONCLUSION

Java Data Base Connectivity is a competing standard for database access. It

provides the interface for application designers to be able access a database and is easy to

understand, implement and use. Throughout the rest of this thesis JDBC will be used in

various client-server configurations to provide heterogeneous database access.

In order to fully demonstrate the potential for Java database access in the

commercial environment, the networking abilities of the language need to be explored.

The next chapter will look at socket programming to provide the communication link

between the client and the database aware server, and Chapter V will use Java's Remote

Method Invocation to provide the communication link. For both these implementations

the JDBC-ODBC bridge will be used as the driver and we will use the java.sql package to

provide the database manipulation and access. In Chapter VI, two type III JDBC drivers

will be used: Borland's DataGateway and Symantec's dbAnywhere. Their respective

43

database development integrated development environment tools will be used to facilitate

database access.

44

IV. SOCKETS AND JDBC

A. INTRODUCTION

Connecting to a database and receiving information from it requires a lot of

underlying communication. The client and server application have an established

communication protocol, to effectively communicate and handle requests and responses.

As pointed out earlier in a client/server environment, this communication may take place

in a two-tier architecture (client database application talks directly to the database server

over a network) or in a three-tier architecture (client application talks to the database

server via a middleware server). Regardless of these architectures, the underlying

communication between client and server side can be handled in a.variety of ways.

Java provides an effective communications API to assist developers in

developing distributed applications. Java offers socket-based communications that enable

applications to handle network communications as if it were file I/O.

Communicating through sockets involves low-level programming. Associated

with this requirement is the added flexibility of implementing a solution that meets a

specific need. The next level of abstraction is Java Remote Method Invocation (RMI),

which encapsulates low level socket programming, allowing local objects to

communciate with remote objects via standard method invocations.

In this chapter, we provide an overview of Java socket programming, followed by

a multi-cast distributed socket database model. We will evaluate the database

connectivity issues using RMI in Chapter V.

B. SOCKETS

A socket encapsulates the information about both the host computer identification

and the port number on which the socket is created and acts as a conduit between

processes. Sockets are the software abstraction of the address space of an Internet host

and one of its ports. An internet address is a unique 32-bit (IPv6 is 128-bit) number for a

host. A TCP/IP host can may have as many internet addresses as it has network

interfaces. A port is an entry point to an application that resides on a host and it is

represented by a 16-bit integer. When a socket is created, the process that owns it can

communicate with another process by going through that socket and a corresponding

socket on the other side.

45

A socket is either a stream socket or a datagram socket. Stream sockets interface

to Transfer Control Protocol (TCP) and are connection-oriented where datagram sockets

interface to User Datagram Protocol (UDP) and are connection-less.

In connection-oriented communication, a connection between processes is

established before data can be exchanged. Establishing the connection involves creating

sockets, sending a connection request and accepting the request. This may take place as a

two-way (request, reply) or three-way (request, request-reply, reply) handshake. Once the

connection is established and while it is in place, data flows between processes through

the sockets as streams of bytes.

The datagram sockets handle connectionless communication. There is no need to

establish a connection in order to send a message for connectionless socket-based

communication. Data sent between processes is called a packet and contains the

destination IP address, destination port and data. Datagram socket communication is

fast, but unreliable. As Stallings pointed out "In the datagram approach, each packet is

treated independently, with no reference to packets that have gone before" [Ref. 24]. As

local area networks become more reliable through the use of fiber, datagram socket

communication is attractive due to increased performance over TCP sockets.

In order to implement socket-based communication, Java provides a socket API

contained in the java.net package. This package allows programmers to do both low-

level networking with DatagramPacket objects which use datagram sockets, and

connection-oriented networking with ServerSocket and socket objects which implement

stream sockets.

Java also provides for multicast socket communication. Multicast socket

communication is a communication method which is implemented using datagram

sockets to send UDP packets to a group of processes that may be servers or clients. The

java.net package contains a MulticastSocket class which lets programmers implement

multicast communication.

Regardless of what type of socket communication takes place, the client and the

server programs must agree upon the communication protocol that is to be used. The

protocol must include what port numbers to send data to, what message format to use.

The client or recipient of the datagram packet must parse the data and determine what

action to take. So for example, the protocol may establishes that a "|", will separate

tokens, and if the first token it the word "net", then the client knows it is a network

request and can invoke the appropriate handler. Regardless of what type of information is

contained in the message, both server and client side applications must invoke

appropriate methods to process the data. Figure 11 depicts a general socket-based

46

client/server communication diagram. The client machine is located at IP address

131.120.1.91 and is using port number 6500 to communcate with a server object located

at 131.120.1.226, listening to port 7500. The server object may then access a database

via a JDBC driver to service the clients request. We are going to modify this diagram

later on based on the type of sockets being used between client and server:

Client

13T.120.1.91j6500>*- >Q3U20.1.226:7500

Server

w DB JDBC
Driver

^ ^ w

Figure 11: Socket Communications

1. Stream Socket Communication

A server may have more than one client, so it should have a dedicated listening

socket for clients that wish to create a session. This socket cannot be blocked so, a

communication channel is established for each client. The server socket is the first socket

that receives the clients' initial connection request message and assigns the actual

communication socket by accepting the request, depending on how many connections it

can handle in total. This type of communication involves the following steps:

• Create a server socket whose sole purpose is to wait for connection requests

from clients (by using an infinite "while" or "for" loop)

intport = 5000; //port number that the server will be listening on (this port

//should not be used simultaneously by any other processes in the system)

ServerSocket ss = new ServerSocket(port);

• Clients make connection requests to the server socket by creating a stream

socket to server's IP address and port number

int server Port = 5000; //client must know server's port number

//convert string representation of server's IP address to InetAddress object

InetAddress host = InetAddress. getByNamef"131.120.1.91");

//make the connection request

47

Socket clientSideSocket = new Socketfhost, port); //stream socket

• Server accepts the request (blocking until a request comes) and assigns a new

stream socket to be used for additional communication

Socket serverSideSocket = ss. accept0; //wait for a client to connect and

//generate a stream socket to communicate with the calling client

• Data communication (stream of data)

An Output stream object is used to send the stream of bytes (data) and an

input stream object for receiving the data. If both the client and the server

want to send and receive the data, then they must create their output and input

stream object pairs.

• Closing the connection

serverSideSocket. close(); //server process code

clientSideSocket. close(); //client process code

Figure 12 depicts the general idea behind having one server socket which then

assigns sockets for clients to continue to communicate with the server. The important

thing in this communication cycle is that the ServerSocket ss is not used for the actual

communication between the server and its client. It is only used to establish a connection

to a client by assigning a new stream socket for follow-up communication. In order to

setup a connection to any number of clients, the same ServerSocket may be used

repeatedly.

After a communication channel has been established between the client and the

server, each needs to create its own input and output stream objects in order to pass

messages back and forth. A sample implementation can be seen in Appendix B which

demonstrates how ServerSocket and Socket classes can be used to serve clients for

database access and data manipulation requests. The client in this implementation sends

queries as stream of bytes through its output stream object. The server receives requests

via input stream object and handles it by calling our ExecuteSQL function. The

executeQuery method executes the query by invoking the appropriate JDBC API

methods. The server places the results into a vector of hash tables which can be easily

converted into stream of bytes to be sent to the client via the server's output stream

socket. When the client receives the data from its input stream, it just prints it to the

48

screen without worrying about its format, because the stream has been pre-formatted by

the server (i.e., each line contains one tuple).

Client 1
Socket (data) [s)<-

Server

Client 2
Socket (data)

Client n /
Socket (data) g^"

ServerSocket

Socket (data)

Socket (data)

Socket (data)

JDBC
Driver DB

< ^. Connection request

^ P> Follow-up
communication

Figure 12: Stream Socket Communication

2. Datagram Socket Communication

Datagram socket communication is based on User Datagram Protocol (UDP)

which is a packet-switching protocol and uses unreliable datagram packets. UDP does not

attempt to ensure that each packet reaches its destination. According to David Flanagan,

"A datagram is a very low-level networking interface: it is simply an array of bytes sent

over the network. A datagram does not implement any kind of stream-based

communication protocol, and there is no connection established between the sender and

the receiver. Datagram packets are called 'unreliable' because the protocol does not make

any attempt to ensure that they arrived or to resend them if they did not. Thus, packets

sent through a datagram socket are not guaranteed to arrive in the order sent, or to arrive

at all. On the other hand, this low-overhead protocol makes datagram transmission very

fast"[Ref. 24].

The java.net package has a DatagramSocket class to implement datagram

transmission. Datagram sockets are created by specifying a port number. If left

49

unspecified, the operating system will assign a port number automatically. The java.net

package also offers a DatagramPacket class which programmers can use to create

datagram packets that contain data, a destination address and a destination port. The

following is an example of how to create and send a datagram packet:

//create a byte array that will contain the data

int dataLength = 100;

byte[] dataArray = new byte[dataLength];

String host = "230.0.1.222"; //destination address

int port = 4446; //destination port number

//get the Internet address of desired host

InetAddress address = InetAddress.getByName(host);

//create a datagram packet

datagramPacket packet = new DatagramPacket(dataArray,

dataLength, address, port);

//create a datagram socket in order to send the packet

DatagramSocket datagramSocket = new DatagramSocket();

//send the packet

datagramSocket.send(packet);

//close the socket

datagramSocket.close();

The following is an example of how to receive a datagram packet:

//create a datagram socket to listen on a desired port

int port = 444 6;

DatagramSocket datagramSocket = new

DatagramSocket(port);

// create a buffer (a byte array) to read datagrams

//into. If the incoming packet

50

int maxBuffer = 1024;

byte[] buffer = new Byte[maxBuffer];

//create an empty buffered datagram packet

DatagramPacket packet = new DatagramPacket(buffer,

maxBuffer);

//wait to receive a datagram (blocking)

datagramSocket.receive(packet);

Section C of this chapter provides a more detailed example of the use of datagram

sockets. The model also demonstrates the power of multicast sockets which will be

explained next.

3. Multicast Socket Communication

The exchange of single messages is not the best model for communication from

one client to a group of servers which provide either common or different sets of services.

This raises the issue of group communication which can be implemented using Java's

MulticastSocket class. Multicasting means sending a single message to a group of

processes. Multicast messages may be multicast UDP packets or stream objects.

The Java MulticastSocket class offers joinGroup() and leaveGroup() methods for

group management. A process can be a member of multiple groups. Each group must

have a valid IP address in the range of 224.0.0.1 to 239.255.255.255. In order to receive a

multicast message a process must be a member of a group, but it is not necessary to be a

member of a group in order to send a multicast message to a group.

In a client/server environment, server processes may be clients of other server

processes. If the members of a multicast group are database servers, then coordination

and control facilities between different databases can be implemented in an efficient way.

The model explained in the following section demonstrates how multicast socket

communication is used effectively between the companies of an Army Battalion. Each of

which is maintaining a repair parts database.

C. MULTICAST SOCKET JDBC MODEL

This model has been created to demonstrate Java Database Connectivity using

both unreliable, yet fast datagram sockets for point-to-point communication between

51

client and server applications and multicast sockets for handling coordination and control

facilities between a group of database servers and client applications. It has been

implemented using the Java Programming Language and the source code can be found in

Appendix B. The actual evaluation environment is shown in the following figure. The

objects a_CoParts, b_CoParts and c_CoParts act as database servers whose only

privileges are querying (select only) and updating their own databases. The a_CoParts

and b_CoParts servers and their databases (Microsoft Access Database) reside on a

machine named "roxanne". The c_CoParts server resides on a machine called "fido", but

its database (Microsoft SQL 6.5 Database) resides on a remote machine named

"cryptologist" which is running Microsoft SQL 6.5 Server. The l_BnParts object is a

high-privileged database server which can manipulate all three of the databases.

1 BnParts resides on machine "roxanne".

a CoParts a CoParts

b CoParts b CoParts

1 BnParts

roxanne
131.120.1.91

c CoParts MS SQL 6.5 c CoParts

fido
131.120.1.57

cryptologist
131.120.1.226

Figure 13: Socket Evaluation Environment

In our model each database server has a different method of handling client

requests based on what level of authority it has. For example some database servers have

search only capabilities and these can only return the result sets of database queries.

Other database servers may have the capability of updating the database and others may

have more detailed database management capabilities. You can picture this as a chain of

52

command with each individual level in the chain having different responsibilities and

based on those responsibilities having different functionality.

Database servers may form a multicast group that handles client requests. Clients

can ask database servers to join or leave a particular multicast group by sending "join" or

"leave" messages. Clients can also communicate directly with database servers through

datagram sockets.

The most significant advantage this model is giving clients access to

heterogeneous databases in a heterogeneous environment. By doing so, each client can

easily find what it is looking for by sending a multicast request to the group. So for

example, if a company was looking for a certain part, it would check it's local database.

If the part did not exist, it would send a multicast request to the group to find if another

company has the required part. If no company has the required part, the request gets

forwarded to the Battalion object which will attempt to find the part or ultimately order it.

1. Communication Protocol

This model allows client applications to access multiple databases and manipulate

(query, update, insert etc.) them by multicasting or communicating with them directly in

a point-to-point manner. So each database object has a privite listening port, used for

point-point communication and a multicast port used for group communication.

For this model we created a communications protocol that client applications

must use in order to establish communication with servers. This communications protocol

is a message format that must be followed in order to send a multicast or a point-to-point

message to any database server.

A message contains three parts as seen in Figure 14. The first two parts constitute

the message header. And the third part contains the actual message.

Message type Recipient Request

^ s ^ J

Message Header Message Body

Figure 14: Message Format

53

A detailed explanation of the communication protocol used in the socket

implementation will highlight the level of detail required to effectively communicate

between two processes. Figure 15 depicts the simple communication protocol used in the

model. To implement the details, various logic modules were created to include db, net,

and respond modules. Each logic module is an object that can provide a requested

service. The first token of the message (db, net, response) indicated which logic module

to instantiate to service the message. So as the message is received by a server, it parses

the message. Based upon the first token, a logic module is instantiated and the remainder

of the message is passed to the logic module.

Since a message can be directed to an individual server, or group of servers, the

message recipient looks at the next token. The second token is used to differentiate a

request for a specific server from a request for a group of servers. If the message is a

multicast message, then the "all" key word is used, otherwise the second token must be

the name of the database server to make a point-to-point communication. The following

examples demonstrate the protocol:

"db all <request>" is an example of a database related multicast message.

"net a_CoParts <request>" is an example of a communication related point-to-

point message. The recipient of this message is the Alfa Company (a_CoParts) database

server.

"response db <request> " is an example of a response message to the client after a

database query. So the client knows it has received a result set that needs to be displayed.

By parsing the message and implementing various logic modules, functionality

could be added to the objects. For example all database objects (a_CoParts, b_CoParts,

and c_CoParts) used the same class files. So the application code was reused by multiple

objects. When an instance was created, the constructor accepted a name, such as

"a_CoParts" which would be used to differentiate the object. This was effective in

handling general networking logic, and client display logic, but was not effective for the

database logic module.

So each database ojbect, would have it's own specific database logic module.

This module would be used to set a connection to the database, and manipulate the

database. If a company was given more database manipulation capabilities, such as being

authorized to order parts, then it would be given the appropriate database logic module.

54

db —►

—►

all

<name of the server>

—►

—►

<sql statement>

<sql statement>

net —► <name of the server>

<name of the server>

<name of the server>

—►

—►

join

leave

respond

response —► w
<message>

<message>

<message>

db

net

ack w

Figure 15: Message Format

The message body of a database related messages must be SQL

statements specific to the databases maintained by database servers. For example:

" db all SELECT part FROM PartsTable WHERE part = 'tire-5443' "

could be a multicast message looking for a specific tire from a database server group.

Any database server that finds the tire in its database responds to the client. If the server

does not have the part, a negative acknowledgement is sent.

The body of multicast communication related messages should be either a "join"

or a "leave" key word. A "join" message is a request to a database server to enter a

multicast group and remain a part of that group until a "leave" message is sent. For

example, "net aCoParts join " instructs the Alfa Company database server to join the

multicast group. The network logic module implemented by "a_CoParts" would start a

Java thread. The thread would be a group multicast listening thread, that would listen to

55

multicast communications, and spawn a message handler thread in response to any group

messages received.

A Java StringTokenizer object is used to parse these messages with a delimiter of

white space. Tokens are evaluated by middleware servers and an appropriate logic

module is called to handle the requests. The following section explains how these

messages are sent between processes and how multicast and datagram sockets are used

effectively in this environment.

2. Model Implementation

To effectively communicate an established protocol must be followed by the

sending and receiving processes. The figure 16 depicts a client/server socket model used

to make database requests. The client sends a datagram packet containing the following

message:

db a_CoParts select tire from parts where partid = 5433

The database middleware server receives the datagram packet and spawns a

messageHandlerThread to service the request. The messageHandlerThread parses the

message into tokens. If the first token is db, the handler knows it is a database request

and will instantiate a database object to further process the message. The database object

extracts the next token, which specifies the database that is to process the SQL request.

In this case the second token is a_CoParts, so the server knows the request is specifically

for A Company, and generates an a_CoPartsLogic object.

The third token is the actual SQL statement to be processed by a_CoParts. The

database logic object uses the JDBC API to communicate with the remote or local

database management system. In our model the JDBC-ODBC bridge is used to translate

the Java calls into ODBC calls, which invoke the database specific ODBC driver. The

request is then translated from ODBC to a vendor specific protocol and sent across the

network to the DBMS Driver manager. The driver manager executes the SQL statement

and returns a result set, if applicable.

If a result set is generated, it is the responsibility of the a_CoPartsLogic object to

create a socket and datagram packet, and send the results to the client process. The result

set must be packaged using the agreed upon delimators so the client can parse and utilize

the response.

56

The client process follows the same communication protocol as the database

server, and generates a messageHandlerThread to process the message. The

messageHandlerThread removes the first token, which identifies the message as a net

logic response. The net logic further processes the request and realizes it is database

response whose result set is then displayed on the screen.

client

db a_CoParts select tire from parts where partid = 5433

Database
Middleware

Server

Middleware Server remote /local DBMS

Figure 16: Database Datagram Socket Server

To increase the functionality of datagram sockets, database servers can join

groups to provide common sets of services. The model we implemented portrayed an

Infantry Battalion, consisting of companies. Each company maintains a repair parts

database, consisting of a standard prescribed load list (PLL). The PLL consists of

communications, weapons, and vehicle parts the unit is authorized to maintain for routine

maintenance. The database should accurately reflect what spare parts the organization has

on hand. A unit is authorized certain types and quantities of parts to be maintained, based

57

upon the units' mission. The quantity on hand cannot fall below or exceed a specified

level.

Company PLL clerks can query their database for parts. As parts are consumed,

an update is generated and the quantity is decreased. If a part is received, then the part

quantity is increased. PLL clerks cannot delete parts from the parts table, or insert new

parts into the table. For example, a Company PLL clerk cannot arbitrarily add part X to

the database, or decide to stop stocking part Y. To change the prescribed load list the

unit must make a request to Battalion. Units are authorized to laterally transfer parts,

from one company to another to prevent systems from becoming non-mission capable.

In the hierarchy, a Battalion oversees Companies and also maintains its own

prescribed load list. The organization is responsible for monitoring the maintenance

programs of its subordinate units. In our model, Battalion is authorized to coordinate

with peer Battalions. Battalion is also authorized to add and delete items from the

Company's PLL based upon unit mission.To assist company clerks in locating parts, all

company database servers are part of a Battalion multicast group. Each Battalion is part

of a Battalion level multicast group.

In the following example the A Company PLL clerk cannot find a specific tire,

with a part id of 5433, so the clerk generates a request to all members of the group. Each

database server will respond to the requestor if it can provide the part. The organizations

can then coordinate to transfer the part to the requester. If the part cannot be found

within the Battalion, a request is generated to the Battalion PLL clerk who multicasts a

request to peer Battalion parts databases. If the part exists, through the hierarchy of

multicast groups it will be found or ultimately ordered.

58

A Company

^T 1. check local inventor'

2. multicast request

4. send back response —

B Company

l I db all select tire from pai!ts where partid = 5433 :

4. send bjack response

C Company

3. check local inventory

Figure 17: Multicast Parts Request

The example above depicted the client process as being a database server group

member, but the client could be a stand alone client application. For example, if a

Company Commander wanted a parts inventory report, the application would send a SQL

query statement to the database to collect information. Depending upon where in the

hierarchy the commander was, he would dictate how many organization's PLL he would

be able to view.

By employing a middleware server the Commander may access a number of

distributed heterogeneous databases. In our model, one database was a MS SQL 6.5

database and the remaining databases were MS Access databases.

By parsing the message, the specific business logic can reside at various levels.

For example, if a_CoParts inventory of widgets drops below a certain level, logic

residing on the server may trigger a message or report to be sent to the parts manager.

D. CONCLUSION

Communication between computers ultimately goes through sockets. Regardless

what types of messages are being passed, sockets will be required to make the

communication happen. Implementing socket-based communication requires a

59

substantial amount of low-level programming. When it comes to database connectivity

and database manipulation paradigm, writing all that low-level code becomes tedious.

Commercial middleware solutions to the problem of database connectivity and

database manipulation contain these low-level routines. But socket implementation

allows developers to freely customize their applications depending on the users and/or

administrators' need. The overall performance of the application can also be increased by

this customization.

One other thing that we experienced while implementing the model explained in

section C was the power of using Java interfaces. Interfaces allowed us to separte the

implementation logic from the GUI implementation. Through the use of Java interfaces,

the logic modules were able to invoke methods declared in the interface. GUI objects

such as frames, or dialog boxes would implement the interface. Parent threads and

objects passed themselves via the "this" operator would allow subordinate threads and

objects the ability to invoke methods defined in the interface and implemented by the

GUI. This allowed those objects to display result sets, connection information and

various messages passed and received.

60

V. REMOTE METHOD INVOCATION AND JDBC

A. INTRODUCTION

The low level details of socket programming hinders a designers ability to focus

on interface development or efficient database access and results in a longer development

cycle. An alternative to sockets is Remote Method Invocation (RMI), which abstracts the

communication interface to the level of a procedure call. Instead of working directly with

sockets, the programmer has the illusion of calling a local procedure, when in fact the

arguments of the call are packaged up and shipped off to a remote object to process the

call.

Remote Method Invocation (RMI) is a powerful distributed computing

technology that allows a designer to develop a networked application without having to

worry about the low-level networking details. It is a Java distributed object solution that

allows a Java client the ability to access a Java server, and invoke methods that the server

makes available in its interface. RMI encapsulates the underlying mechanisms for

transporting method arguments and return values across a network.

Coupled with JDBC, RMI can be used to create a middle tier heterogeneous

database server. A Java client will be able to invoke methods on a remote Java server.

The server can employee JDBC to communicate with various relational database

management systems. This implementation can reduce the system administrators burden

of managing database access and client application configuration. All database

management system drivers will reside on the server, resulting in zero client

configuration. The client will not have direct access to the database, and will only be able

to use the methods specified in the interface. Business Logic can also be stored on the

server, so when a user attempts to access a database, the most recent organizational

policies will be enforced. This chapter will provide an explanation of RMI and discuss a

model that was implemented using RMI and JDBC to provide heterogeneous database

access.

RMI is a distributed object model. According to Coulouris "A distributed system

consists of a collection of autonomous computers linked by a computer network and

equipped with distributed system software. Distributed system software enables

computers to coordinate their activities and to share the resources of the system -

hardware, software and data" [Ref. 4].

61

A distributed system can be visualized as a collection of server processes and

their client processes. These processes do not necessarily reside on a same computer. In

order for a client process to be served, it needs to find the server that offers the desired

service, then send its request and wait for a reply. The server process may reside on the

same computer as the client or on a remote system. A server may employee the services

provided by another server, so it may also be considered a client process. Each service

program has an interface defining the services it provides. These services may be invoked

by clients. Clients invoke service operations by sending request messages to the servers,

which perform the requested operation and send a reply back to the client.

The Remote Procedure Calling mechanism integrates this client-server

arrangement with a conventional local procedure call of a standard object oriented

programming language. Since, the server and client processes may reside on different

machines communication between them must be handled. The parameters being passed to

the remote method and it's return types must be packaged for transmission across the

network. Data structures must be flattened before transmission and rebuilt upon arrival

on the other side. To flatten a data structure implies taking a complex object and

breaking it down into a stream of bytes on the client side, then transmitting the data to the

server object which will reconstruct the complex object and forward it up to the server

object.

B. REMOTE METHOD INVOCATION (RMI)

RMI is Sun's version of RPC and translates well into distributed object systems,

where communication between program level objects residing in different address spaces

is needed. The following highlights key features of RMI [Ref. 16].

• Object Oriented: RMI can pass full objects as arguments and return values.

The objects must be serializable, such as Java primitives or objects that

implement the java.io.Serializable interface. For example, Java Vectors and

Hashtables implement Serializable, so these complex objects can be passed to

or from a client using RMI, with no additional processing. With RPC the user

would have to decompose the object, send it and recompose it on the client.

RMI encapsulates this process for the programmer in the form a client stubs

and server skeletons that are responsible to marshal and unmarshal the data.

• Implementation Changes: RMI can encapsulate the class implementation

details from a client. Clients only have access to the interface, the

62

implementation resides on the server. So as business logic, or implementation

details change, they only need to be changed on the server. As long as the

interface signature does not change, the implementation details are totally

encapsulated.

• Rapid Development: RMI makes it easy to write servers for a full scale

distributed object system. A server object implements the interface, declares a

security manager, and binds the instantiated object to the rmi registry.

Writing reliable distributed applications is simple.

• General Goals: RMI supports seamless remote invocation of objects in

different virtual machines, including call backs from applets. Remote Method

Invocation (RMI) was designed to seamlessly support remote method

invocations on objects across Java Virtual Machines. Because RMI centers

around Java, it brings the power the of Java safety and portability to

distributed computing.

• Garbage Collection: RMI uses a reference counting garbage collection

scheme. It keeps track of the number of references to an object.

One of the limitations of Java RMI is that Java must be run on both ends of the

network connection. A Java client can only communicate with a Java server. But the

Java server can communicate with non-Java applications such as a database management

system.

The following section will provide a more detailed explanation of the RMI system

architecture, and how RMI encapsulates interprocess communication.

1. RMI System Architecture

Figure 18 highlights the three layers of the RMI system: the stub/skeleton layer,

the reference layer, and the transport layer. An independent interface and protocol is

defined for each layer allowing alternate implementations to be replaced without

affecting other layers of the system. A remote method invocation from a client to a

remote server object travels down the client stack, then up through the server stack,

where the method gets invoked and the results are passed down the server stack through

the network to the client and up the client stack.

63

Application Client Server

X X
RMI

System

Stubs Skeletons

Remote Reference Remote Reference

Transport Transport

Figure 18: RMI Architecture [Ref. 15]

a. Stub/Skeleton Layer

This layer is the interface between the application (client and server

applications) layer and the remote reference layer of the RMI system. Stubs and

skeletons are used by the client and server processes respectively to communicate. Sun's

rmic tool (rmi compiler) is used to generate a stub and skeleton class file from the object

implementation class file. A stub/skeleton is generated for every remote implemention

object that is made available to client applications via an interface.

When the client application makes a remote method call, the parameters

and call are passed to the stub layer. The stub layer is responsible for marshalling

(flattening) the call. It then passes the call down the RMI protocal stack, which

ultimately transmits the call across the network to the remote server. The call moves up

the server stack to the skeleton layer. The skeleton layer is responsible for unmarshalling

the call. The skeleton reformats the method call, then invokes the appropriate method of

the instantiated implementation object. The method is executed and it's return values are

passed back through the skeleton, where they are marshalled and returned to the client.

The process is depicted in Figure 19.

64

parameters

marshaled parameters

interface stub k. w
<r-

skeleton method

marshaled return value -o"'
,-A

Client Remote Object
response

Remote Server Object

Figure 19: Marshalling

b. Remote Reference Layer

The remote reference layer deals with the lower-level transport interface.

This layer is responsible for carrying out the semantics of the invocation. For example,

the remote reference layer is responsible for determining whether the server is a single

object or is a replicated object requiring communications with multiple locations. The

remote reference layer transmits data to the transport layer via an abstraction of a stream-

oriented connection. When a server is exported its reference type is defined. If the server

is a UnicastRemoteObject, then it is a point to point unreplicated server. This was

designed to allow for modification and future expansion. For example, a

MulticastRemoteObject, would have reference semantics that allowed for a replicated

service.

c. Transport Layer

The transport layer provides the communication implementation between

the client process and server process using TCP-based Java Sockets. It listens for

incoming requests, establishes a connection (channel) to process the request, and

manages the connection. A channel is a conduit between two address spaces, the

transport layer manages the connection between the local and remote address spaces.

When the client first establishes a remote reference to an object, the client

must find that object on the network. To do so, the client performs a lookup. On the

server anrmi registry process runs and continuously listens for messages on a

65

predetermined port. The clients lookup request moves down the RMI stack, the transport

layer gets a port from the local operating system and sends the request to the remote

registry process. The registry consults a table to confirm that the object exists, if it does,

a communication channel (TCP/IP stream socket) is established between the client and

the remote object.

d. Application Layer

The application layer sits on top of the RMI system. The client and server

applications interface with the stubs and skeletons respectively. The server application is

responsible for instantiating implementation objects. Once the object is instantiated it is

bound to the registry making the object available to client applications.

The client application is responsible for performing the lookup, to find the

remote object and establish a communication channel. Once the channel has been

established the client can invoke remote methods just as if the object resided locally.

The only difference is that each method call must catch a RemoteException. RMI is

synchronous, so the calling process will block until the remote method completes.

2. RMI Development Process

An RMI object is a remote Java object whose methods can be invoked from

another Java Virtual Machine across a network. The following section outlines the steps

in using RMI for distributed Java computing. Figure 20 depicts the process graphically,

demonstrating the key steps.

a. Agree Upon the Interface

The first step in employing RMI is to agree upon the interface of the

remote object. The object interface declares what methods are visible to the client, and

what services the server must provide. The interface is the contract between the client

and the server. The client must understand what parameters and return types each method

requires so they can be handled properly. RMI allows complex objects to be passed back

and fourth between the client and server process. For example, if the method returns a

vector of hashtables containing various primitive types, the client needs to know this. The

object that implements the interface must extend java.rmi.Remote and each method

which is to be visible to clients must throw a RemoteException.

66

4. Create a
Client

stub.class

9. Start Client

1. Define Remote
Interface

2. Implement the
Interface

3. Create an
ADDlication Server

6. rmic impementation .class

skeleton.class

7. Start
rmiregistry

registers someServer

8. Start
Application Server

instantiates

someServer

Implementation
Objects

Figure 20: RMI Design Process

a. Implement the Interface

The next step is to implement the interface. The object that implements the

interface must extend java.rmi.UnicastRemoteObject. Each method that is declared in

the interface must be implemented by this object and must throw a RemoteException.

The implementation can be simple or complex. For example, the implementation may

use JDBC to establish a database connection, to a Microsoft SQL 6.5 server, which

resides on another remote machine. The implementation details are hidden from the

client. The only methods the client have access to are those specified in the interface.

67

The implementation can be modified or changed, as long as the signature

does not change. This can be effective in storing business policies or logic on the server.

The client makes a policy request, and will always get the current policy. If the policy

changes, the changes are made on the server, and all future users will get the updated

version. In the case of database access, if the back end database manage system changes

from a legacy implementation to a newer implementation, the changes remain transparent

to the client.

RMI provides a convenient means of partitioning a distributed system

design between the logic and the application design. As end users continue to rely on

graphical user interfaces, the application designers job is becoming more challenging.

RMI allows the logic, or back end designers and application designers the ability to focus

on their respective areas of responsibility. In most cases, the client, using the interface

and it's declared methods will be the application designer.

b. Object Server

The object server is a file that contains a main function. The process

instantiates and binds implementation objects. When the object server binds an

instantiated object, the name is registered with the registry service. For example:

Naming.rebind("navyServer", new navydblmpl());

This call instantiates a navydblmpl() object which implements navydblnt,

an interface. The function call Naming.rebind comes from the RMI Naming class. This

call is used to obtain the services of the rmi registry, to register the new object with the

name "navyServer". Rebind updates the mapping between the name, navyServer and the

remote object instantiated by new. The registry will discard any previous binding to the

name.

One object server can instantiate and bind as many different objects as the

system designer wishes. The application server may also be responsible for logging all

requests that were received and processed by remote objects.

c. Java Client Application

The fourth step is to create the Java client application. The application will

usually consist of the GUI for the end user. To utilize the services provided by a remote

object, the client must establish a reference to the desired remote object. A URL based

68

naming scheme is used to perform a lookup for the instantiated implementation object.

The request gets passed down the rmi stack to the transport layer, which makes a TCP/IP

connection to the remote object. The server machine must have an rmi registry active,

which consists of a listening thread. Once a connection is established the rmi registry

performs a lookup in its local table for an object entry name that matches the name

provided by the client. For example:

navydblnt server =

(navydblnt)Naming.lookup("rmi://131.120.1.91/navyServer");

The lookup method returns a remote object for the URL name:

"rmi://131.120.1.91/navyServer". The call returns a reference object to the client, which

is type cast into a navylnt object. Now the client can invoke the methods specified in the

interface by using server.<methodName>.

d. Run the System

In order to run the system, the rmi registry must be started on the server

machine. The rmi registry is a utility program provided by Sun, that listens for rmi

requests. The registry registers rmi objects that have been instantiated and made

available on that machine. Each server process can supports it's own registry, or one

registry can support all the virtual machines on the server node, such as an application
server.

Once the rmi registry is active the object server can be started. As stated

before, the object server, instantiates and binds implementation objects to the registry.

For example if the server instantiates a navydblmp object and registers it with the registry

under the name of navyServer, that object is now available to service requests.

The final step is to start the client process. The client process can reside

on the same, or different machine as the server. As stated before, in order for the client to

interface with a remote object, it must instantiate the interface object and performs a URL

lookup. It must reference the remote object by the name, to which it was bound on the

server side registry.

C. RMIJDBC MODEL

To demonstrate the capabilities of using RMI with JDBC we developed an object

server that provided relational database access to a MS Access database, and a MS SQL

69

6.5 database. As depicted in Figure 21, all database drivers were stored on the object

server. The Microsoft Access database resided on the same machine as the object server,

and the Microsoft SQL 6.5 database resided on a remote system.

The accounts database represented a financial database, while the navy database

represented an organizational database. The object server instantiated an implementation

of both the navy and the accounts database interfaces. The instantiations were bound to

the rmi registry which made the interface implementation methods available for use by

client applications.

The client GUI was designed using Symantec Visual Cafe and provided various

views of the database, and various database manipulation methods via the remote

implementation objects.

Client SQL Server

G
U
I

navy_stub

acct_stub

1ST Tier 3rd Tier

Figure 21: RMI Implementation

To demonstrate the potential of RMI coupled with JDBC the remainder of this

section will explain the details of the system. The explanation will attempt to follow the

design steps as outlined in the preceding RMI Development Process above.

1. Interface

An interface to each database was designed to provide a module design, and was

called acctsdblnt and navydblnt. One interface could have been used to access multiple

70

databases. The data base methods made available to the client consisted of specific

methods for the basic or naive user and general, powerful methods for super users. The

client was the application designer who was designing the front end interface. In creating

the system the designers must agree on where the business logic will reside. In our

model the logic was present on both the client and the server.

For example, do the system designers want to give the application designer

complete access to the database, to create tables, delete tables, and insert tuples. These

are powerful options that can be made available in the interface, yet may only be needed

by database or system administrators. Or does the system designer want to provide

limited database access and manipulation, providing only high level methods.

The following functions allow the user to directly manipulate the database which

may be appropriate for a database or system administrator. In order to use these methods

the user must have a general understanding of SQL and the structure of the databases.

These methods were used by the GUI designer. For example, the client may enter a

string in a text box and click on the submit button, which would call the

executeSQLGetString remote method.

//for database administrator GUI

public abstract String executeSQLGetString(String

sql)throws RemoteException;

public abstract Vector getTableName()throws

RemoteException;

public abstract Vector getTableMetaData(String

sql)throws RemoteException;

The first method allows a user to issue a basic SQL statement (CREATE a table,

Delete a table or tuples, Insert data, or execute a Select operation). The two supporting

functions are used to provide meta data about the databases to assist the user in writing a

SQL statement. This type of interface may be appropriate for a database administrator,

but most likely not for a basic user. It provides a dynamic means to view the contents of

a database and its structure, without having any prior knowledge about the database.

To demonstrate restricted database access the following methods were provided

for the basic user. The user can add a new employee or view the current employees from

the accounts database.

public abstract String viewEmployees() throws

RemoteException;

71

public abstract void insertEmployee(String name,

boolean faculty) throws
RemoteException;

This restricts database access and manipulation to only the methods specified in

the interface. Various views and database manipulation methods can be specified in

various remote objects such as: a database administrator object, a clerk object, or a

manager object. Each object would encapsulate the business logic, and views the client

will have access to and can be easily modified on the server to reflect changing rules.

The end user does not enter any SQL statements, but is limited to executing the methods

provided. This provides limited database views and manipulation.

RMI allows a means to pass behavior from the server to the client. This allows

the client machine to evaluate and implement policy or business logic. The following

function allows a client to get the current database access policy from the server. It

returns an accessPolicy_Int object. The implementation object implements serializable,

so in can be transmitted via RMI.

//returns an object that implements the accessPolicy

public abstract accessPolicy_Int getAccessPolicy()

throws RemoteException;

public abstract void addUser(String uid, String pass)
throws RemoteException;

The policy object contains various methods including one called getAccessRights.

To demonstrate how a policy can be maintained and modified on the server, yet

implemented or enforced on the client a simple example was developed. To provide

database access, the administrator enters the users name, password, and access code. The

information is stored on the remote server, via the addUser method declared in the

interface. The access code is used to determine what views and database manipulation

functions are appropriate for the user, based upon the current policy.

When a user logs onto a system, the current policy object is downloaded from the

server. The object contains a function called getAccessRights, which takes the users

name and password, performs a lookup to get the users access code. The access code is

compared to the current policy to determine what view the user is authorized. Based

upon this logic, the GUI frame that appears may be a super user frame, providing full

database access or manipulation, or a simple user frame, providing limited access.

72

If the policy changes, and all personal that have an access code of X are

authorized a different view, the policy is changed on the server, and the next time that

users logs in he or she will get the new view. This implementation can be extended to

provide more computationally complex data processing or error checking on the client

machine to reduce network traffic.

2. Interface Implementation

The implementation details are completely hidden from the client. This allows

the implementation to be modified, provided the method signatures do not change. In our

model, the implementation utilizes JDBC to provide the database access and

manipulation.

3. Object Server

The object server consists of an active process which instantiates various remote

objects and registers them with the registry. In the model, the object server instantiated

and bound two remote objects as depicted in the following code:

public static void main(String args[])

{

try{

System.setSecurityManager(new RMISecurityManager());

Naming.rebind("acctsdbServer", new acctsdblmpl());

Naming.rebind("navydbServer", new navydblmpl());

}catch(RemoteException e){

System.out.printIn("Remote Exception " + e);

}

}//end main

The names used by the server, acctsdbServer and navydbServer are the names that

get registered by the registry. When a client performs a lookup, it must specify these

names in order to create a communication channel.

4. Client Application

The client application is the graphical user interface designed for the end user. To

the end user, how or where the data is stored is irrelevant. The end user is only

73

concerned that the application provides the services he or she desires. It is the

responsibility of the interface designer to meet the end users requirements.

The following briefly discusses some of the key methods used in the client

application by the application or interface designers. When the application is initialized,

it establishes a security manager and performs a lookup to connect to an instantiated

object, for example with the name of "navydbServer".

//Navy Data Base Object

navydbServer =

(navydblnt)Naming.lookup("rmi://131.120.1.91/navydbServer")

If the lookup is successful, then a communication channel is established and

managed by the transport layer of the RMI stack. The client now has established a

reference to the remote object, navydbServer. If the user enters his password and is

granted super user access, then when the GUI frame is created the remote method

getNames() is invoked.

When the client invokes navydbServer.getNames() a vector containing the table

names of the database is returned. The names are displayed in a drop down menu for the

client to use while writing SQL Statements. The database metadata function, used by the

server implementation object, provides a dynamic view of the current state of the

database. If new tables are added to the database, the next time an authorized super user

frame is generated, the new table will be displayed. The remote object that implements

this function only needs to know how to establish a connection with the database. This

implementation separates the backend database implementation from the front end GUI

implementation.

To provide the user with additional database metadata, the client may select a

table name from the drop down menu to invoke the

navydbServer.getTableMetaData(String sql) method. The SQL statement that gets

passed to the function is "select * from <selected table>. The server side implementation

of the function creates a JDBC statement object, executes the query, and gets the

ResultSet meta data. Based upon the metadata, the column names are extracted, placed

in a vector and returned to the remote client. The implementation code is as follows (a

valid connection has already been established to the database):

Statement stmt = con.createStatement();

ResultSet results = stmt.executeQuery(sql);

74

ResultSetMetaData rsmd = results.getMetaData();

Vector resultVector = new Vector ();

int cols = rsmd.getColumnCount();

for(int ix = 1; ix < cols; ix++)

{

String colName = rsmd.getColumnName(ix);

resultVector.addElement(colName);

}//end for

stmt.close ();

return resultVector;

The client application displays the column names in a drop down to assist the end

user in generating a SQL Statement. The column display width and the column type

could also be returned in the Vector.

The user can then enter a SQL Statement, using the table meta data provided to

assist in writing the statement. All super user SQL statements are processed using the

executeSQLGetString method, which processes all basic SQL statements. This provides

the super user the ability to create a new table, delete a table or execute a select

statement. If a result set is returned, the remote object, places the contents of the result

set in a string, inserting a delimiter between tuples and returns the string to the client.

The client application can parse the string and display the results.

D. CONCLUSION

Remote Method Invocation provides a powerful means of creating a distributed

database aware system. Some of the strengths of RMI are:

• SetUp: All database client drivers and configuration remains on a central

server node. This simplifies administration, requiring no database drivers to

reside on client machines.

• Scalability: The database being used can be replaced transparently to the

client, provided the agreed upon interfaces do not change. The physical

location of the database can be moved, and only the implementation details

need to be modified, again, transparently to the client.

75

• Logic: All business logic or policies can reside on the server, and be

downloaded and enforced on the client. This ensures all end users are

complying with the most recent policies.

• Communication: The RMI model encapsulates low level communication

requirements. System designers are not concerned with socket programming,

and communication protocols. They only need to agree upon the interface.

Methods are used to communicate between a client and a server.

• Modularity: By employing RMI the division of system design is simplified.

Once the interface is agreed upon, the application designer can begin

implementing the GUI. The database administrator manages the database.

The business logic, regardless of how complex, can be designed and stored on

the server. Implementation details can change at all levels of system design,

provided the agreed interfaces do not change, with minimal impact on other

system components.

RMI is a Java client to Java server implementation of distributed object model.

Coupled with JDBC the two packages provide an easy means of developing distributed

applications.

76

VI. MIDDLEWARE APPROACH

Remote Method Invocation is a powerful technology which allows designers to

customize their object brokers, embed logic on the server, and provide client applications

with dynamic database access. The cost associated with this flexibility is the amount of

programming required to provide a total solution (GUI, Logic, and Database Server),

which can slow the development cycle and increase cost. The next layer of development

abstraction is to use Rapid Application Development (RAD) Tools to design database

aware applications.

As Java technology matures, RAD tools are appearing that assist commercial

designers in creating Java solutions. Tools that assist in building a graphical user

interface allow designers to focus on the total system, and not overly commit resources to

GUI design. For Java RAD vendors, a key technique to differentiate a tool, and gain

market share is to extend the functionality offered by the tools to include database aware

components. Database aware components are Java beans capable of providing database

functionality. By adding this functionality, these tools can provide a total solution to Java

designers, decreasing the cost associated in providing a database aware solution.

This chapter will explore the capabilities of two Java RAD tools: Borland's

JBuilder Client/Server Suite and Symantec's Visual Cafe. Each tool comes bundled with

a proprietary Type III Net-Protocol/All Java Driver, to provide heterogeneous distributed

databases access. These drivers are middleware servers, which process JDBC calls into a

DBMS specific network protocol and communicate the result to the DBMS specific

server. Table 2 depicts the desktop and client/server databases both middleware servers

can connect to. A desktop database implies that the middleware server and the database

should reside on the same computer.

DeskTop DBMS Client/Server DBMS
Dbase IBM DB/2

Paradox Informix
MS Access* Oracle

FoxPro Sybase*
MS SQL Server*

Table 2: Middleware Database Access

In attempting to use a reasonable mix of relational database access, one desktop

and two client/server DBMS's were selected. Microsoft Access was chosen as the

77

desktop database due to it's availability. Microsoft SQL 6.5 server was selected due to its

increasing popularity and market share as a client/server database. Sybase SQL server

was chosen as a non-Microsoft solution.

The middleware servers (Symantec dbAnywhere and Borland DataGateway) were

connected to the databases as depicted in the figure 22. These middleware servers were

the conduit between Java client applications and remote databases. A Java client would

use the middlewares API to communicate requests. The middleware server would use

JDBC to forward the request to the appropriate backend database engine.

Client Middleware Server
£Z Z^\

MS
Access

/ V

MS SQL 6.5 /
Server /

\ Sybase SQL
\ Server

Figure 22: Commercial Tools Evaluation Environment

A. SYMANTEC VISUAL CAFE

Visual Cafe 2.0 Database Development Edition was released in August 1997 and

was one of the first commercially available Java Database RAD tools. The Database

Development Edition version includes a dbAnywhere Type III JDBC server, as well as

database aware components and wizards integrated within the IDE to facilitate relational

database interface development. To properly use the database aware components

provided by Visual Cafe, the dbAnywhere server must be properly configured.

1. Server Configuration

The middleware server must be running to enable the database aware component

functionality. To provide heterogeneous relational database access, the system

administrator needs to be familiar with the client/server DBMS that the dbAnywhere

78

server will interact with. In our example, the dbAnywhere server was going to intract

with a MS SQL6.5 database, a MS Access database and a Sybase database, so the DBMS

client utilities of the DBMS must be installed on the dbAnywhere middleware server,

since it becomes a client to the SQL 6.5 server or Sybase server.

a. Connecting to Microsoft SQL 6.5 Server Database

To interface with the SQL 6.5 server, the fist step is to install the SQL 6.5

client utilities on the dbAnywhere server machine. The SQL 6.5 Configuration Utility is

used provide connection information to the SQL6.5 Server. For example, the network

protocol used was TCP/IP. A server alias was provided (cryptologistServer) and the SQL

6.5 server socket address entered as the connection string 131.120.1.226,1433. Port

1433 is the default SQL 6.5 server listening port. dbAnywhere contains a proprietary MS

SQL 6.5 driver so the final step was to use the dbAnywhere configuration utility to

register the database. The specified data source URL was:

jdbc:dbaw://localhost:8899/SQL_SERVER/

cryptologistServer/NSGDB

Where the protocol was jdbc, with a sub-protocol of dbaw, running on port

number 8899 of local host, with SQL_Server engine, to access cryptologistServer,

specifically the NSGDB database. Since the SQL 6.5 server utilities were used to register

the alias cryptologistServer, and it's associated TCP/IP socket information, the

SQL_Server engine will invoke the appropriate driver, which looks to its registry to get

the connection information for the specified cryptologistServer.

An ODBC alias can also be created using the ODBC Administrator by

adding a SQL server data source. This is not necessary since dbAnywhere contains a

proprietary driver, but was used for our RMI and socket implementation. The

administrator will display the SQL server aliases registered by the SQL server client

configuration utility.

b. Connecting to Sybase SQL Anywhere Server Database

This set up was similar to the Microsoft SQL 6.5 setup. The fist step is to

install and configure SQL Anywhere 5.0 Client Utilities on the dbAnywhere server. This

installs the appropriate Sybase drivers. Once the client utilities are installed the system

database administrator must use the SQL Central utility to establish a network

79

connection. A connection profile must be created, which specifies the user

identification, password, database name, and a server alias. A database start up box is

available to specify startup options.

By default the SQL Anywhere client broadcasts a request to identify a

server on the network matching the server name specified, in our case hetero Server.

Under most networking topologies the broadcast will not leave the sub-net, so if the

server is on a different sub-net its IP address needs to be specified through command line

parameters, entered in the database startup box. This was not intuitive and required a few

days of research to realize we had to specify:

dbclient -x tcpip{HOST = 131.120.2.8}heteroServer

The Final step is to configure dbAnywhere. To access a SQL Anywhere

5.0 server, dbAnywhere uses the Sybase SQL Anywhere 5.X ODBC Driver. This

requires using the 32 bit ODBC Administrator utility to create an alias to the database.

The ODBC configuration followed the same procedure as the SQL Anywhere client

configuration, including specifying the command line start up switches. Once the ODBC

configuration was complete the dbAnywhere configuration utility was used to establish

the connection. Even with this configuration, we could not connect to the SQL

Anywhere server unless we used SQL Central to establish a connection first. Then the

dbAnywhere connection was successful.

Once the dbAnywhere server is configured to connect to the desired

databases, when the designer users the Visual Cafe database aware components, they will

refer to dbAnywhere to interact with the appropriate datasource.

2. Database Aware Components

As explained above, the administrator must understand the relational DBMS's that

the middleware server is going to provide access to. Once the dbAnywhere server is

configured designers can develop database aware graphical applications.

Visual Cafe provides a database wizard that takes the designer through the

process of connecting to a database, generating a query, and displaying the results neatly

in a form. All code, including the query is generated by the wizard.

80

The wizard steps include:

Select the dbAnyhwere server

Select a Datasource

Choose a table

Select columns to display

Specify column display component, (text area, list, checkbox) and label name

Select record operators, such as next, previous, and first

The database aware project provides no additional functionality, other than asking

the user to create an applet or application. The wizard generates a form view of the

selected table. The program can be compiled and executed without requiring the designer

to write any code. The wizard does not allow the designer to bind the query to a grid

view (matrix of rows and columns) and does not allow the designer to enter a unique

query. It only generates a subset of select * from table name. The limited record

operators allows a user to look at the next or previous record of the result set, or to enter

and commit a new record. The wizard works well to provide simple form view database

aware application.

Visual Cafe's Database connectivity is provided through symantec.itools.db.pro

package, a Symantec extension of Sun's java.sql package. Designers cannot use Sun's

java.sql package to connect to the db Any where server, so therefor cannot use java.sql to

perform any database manipulation. To display Symantic's version of a result set, the

designer must use symantec.itools.db.awt package, an extension of java.awt package. So,

in order to customize the database functionality provided by the database aware

components the designer must understand these packages. The key objects used to

provide basic database manipulation were: Session, Connectlnfo, and a RelationView.

A Session object represents a db Any where Session. A connection to a

db Anywhere server. This object establishes the connection with the db Any where Server

via a TCP network connection and provides access to the related dbAnywhere classes.

A Connectlnfo object represents a specific data source name, the database the

designer is connecting to via the session object. This object includes the database name,

username and password.

A RelationView object, is used to submit and display the SQL statement. This is

the component that defines and maintains the result set. The result set handles record

navigation and data manipulation. A RelationView object gets bound to a

symantec.itools.db.awt component, such as a text field, or list box in order to display the

information.

81

To graphically create these objects, the designer can drag and drop them onto the

designer form view or the dbNavigator can be used to automatically create them.

dbNavigator provides means to navigate across dbAnywhere servers, and the databases

. they offer to include the column names. The objects(database, column name(s)) can be

dragged to the form designer and will create the required components (Session,

Connectlnfo, and Relation View).

3. Model Implementation

Generating a form view of all tables was not difficult because of the wizard. The

add table utility would launch the wizard and the selected table would be appended to the

existing frame object. In most cases a new frame was created to display the table. This

solution was not effective, because users would be required to open a new frame to view

a table, which cluttered the desktop. We tried to use panels to display the contents which

was more effective, but generated an excessive amount of code.

One of the functions we implemented in the RMI model required a user to log

onto a system, and a drop down menu would then be populated with data sources the user

was authorized access to. To implement the same functionality with Visual Cafe, was

challenging. A StringBuffer was used to format a SQL string, which was submitted and

returned a Symantec relation view object. We were not able to bind the relation view to a

Symantec.itools.db.awt choice box, so the results were placed in a text field.

When the user selected the data source, the goal was to create a connection to that

source, and allow the user to get the database metadata which could assist the user in

preparing SQL statements. These statements could be submitted and the results

displayed in a grid box. Since, dbAnywhere does not support Java.sql, to implement this

would require a more thorough understanding of the symantic.itool.db.pro package which

was beyond the scope of this thesis. We were able to use java.sql to establish a

connection via Borland's DataGateway and use the result set to populate the choice

component. In this case, a simple Java.sql implementation was much cleaner than the

Symantec implementation. Unfortunately, the only interface to a dbAnywhere server is

via Symantec's API. Borland Datagateway accepted Borlands API and Sun's JDBC API.

One of the shortcomings observed was that the wizard hard codes physical path

name to the database. For example, when the add table wizard was used to connection to

the Microsoft Access database that resided on the same machine as the dbAnywhere

server, the following would be hard coded by the wizard:

82

("SELECT[RQ],[Account] FROM

[C:\\dataBases\\Project97].[Travel]");

In this implementation, dbAnywhere used the JDBC-ODBC bridge to provide

access to the data source. The database name was Project97, and resided in the dataBases

subdirectory, on the C drive of the development system. Later, when the project was

deployed to a separate machine, the physical location of the database was changed and

the ODBC alias was updated. This resulted in the client application throwing an

exception. The dbAnywhere server failed to encapsulate the physical location of the

database. When the database was moved back to it's original location, the client

application worked fine. This failed to support a true client/server model and was a

serious shortcoming. This problem was not apparent for the MS SQL 6.5 database.

To deploy the application a Jar utility function exists within the IDE. It can

consolidate all required classes and create a Jar file or a zip file to facilitate distribution.

To provide database access via dbAnywhere, the dbaw.zip and dbaw_awt.zip files can

also be included in the Jar file.

4. Visual Cafe Summary

The integrated development environment (IDE) provided by Visual Cafe does

not have a Java RMI compiler. The awt visual design tools are outstanding for creating a

graphical user interface and fast compilation time is refreshing. Its database functionality

is effective for simple form view data access and manipulation, but lacks the flexibility to

be an effective enterprise development tool. One of the biggest limitations is that Visual

Cafe only provides JDBC access through the dbAnywhere server. This requires the

designer to learn Symantec's database API. Learning a proprietary API defeats the

purpose of using Java. Also, all database aware components and wizards will only work

with a dbAnywhere server, making the application reliant upon a proprietary server.

This also constrained how dbAnywhere could be used as a database gateway. For

example, it may be effective to use the proprietary JDBC drivers (MS SQL6.5 or Sybase)

in conjunction with an RMI implementation. The client could call the RMI object server,

which could use java.sql to interface with the dbAnywhere middleware server, but

dbAnywhere has a proprietary interface, so the interface will have to be via a Symantec

package.

Visual Cafe also does not provide any integration with legacy data and transaction

systems and the IDE is not integrated for Java RMI. The next version of Visual Cafe is

83

expected to offer integrated JDBC support.[Ref. 3]. For simple form views and rapid

design, Visual Cafe is an effective tool. Java.sql is the JDBC standard interface, so most

Java database designers are going to be reluctant to invest time and resources into

learning Symantec's version of a database API.

B. BORLAND JBUILDER CLIENT/SERVER SUITE

Borland JBuilder Client/Server Suite version 1.01 is one of the most powerful and

complete tools for developing Enterprise, pure Java database aware applications/applets.

The JBuilder component palette is decorated with many database aware objects to display

and manipulated data.

JBuilder comes with a type three JDBC driver (network-protocol/all-Java driver)

called Borland DataGateway. It provides developers a multi-tier, fast and reliable

database connectivity solution. Borland DataGateway is a collection of JDBC drivers that

allow Java applications and applets on any platform to access both the desktop databases

and client/server databases listed in Table 2.

1. Server Configuration

Borland DataGateway consists of four major parts. First the DataGateway Client

which may be either LocalDriver.class or RemoteDriver.class. This driver communicates

with the DataGateway Server using the TCP/IP protocol. It is downloaded with the Java

database aware application/applet. Second is the DataGateway Server, which manages

the transfer of information and calls between the Client and the Bridge. The bridge

translated the calls that come from a Java application/applet to a protocol understood by a

database engine. The final part is the engine which communicates with the vendor

specific database management system drivers, or the ODBC API.

Borland DataGateway uses the Borland Database Engine (BDE) and SQL Links,

which supply both native DBMS drivers and ODBC drivers, to provide heterogeneous

relational database connectivity. In order to connect to the client/server databases, the

DBMS specific client utilities, in our case MS SQL6.5 and Sybase, must be installed on

the machine where Borland DataGateway Server is running, similar to the dbAnywhere

configuration. The BDE Administrator utility, which comes with the DataGateway, lets

developers create aliases to the actual databases.

84

a. Connecting to Microsoft SQL 6.5 Server Database

As we have pointed out earlier, the client utilities of SQL 6.5 must be

installed before interfacing with the SQL 6.5 server. The steps for the installation and the

configuration of client utilities are exactly the same as explained in dbAnywhere SQL 6.5

configuration.

The important thing here is to bind a server name to a valid IP address and

a port number where the actual SQL server is running. This server name will be

referenced inside the BDE Administrator while creating the alias to the SQL 6.5

database.

Once aliases have been established and the server is running,

connections to the databases can be done by using either the Remote Driver (for both

local and remote databases) or the Local Bridge (for local databases only) in the

following ways. To invoke and register the Remote Driver class, call the Java method:

Class.forName("borland.jdbc.Broker.RemoteDriver");

For example, to the data source URL for the NSGDB data base was:

jdbc:BorlandBroker://131.120.1.91/NSGDB, where jdbc is the protocol, with a sub-

protocol of BorlandBroker and DataGateway running on the machine whose IP address is

131.120.1.91 and NSGDB is the alias to the database which might reside on that machine

or on a different machine that has a SQL server running. To invoke and register the Local

Driver class, call the Java method:

Class.forName("borland.jdbc.Bridge.LocalDriver");

2. Database Aware Components

Jbuilder defines its own components to provide database connectivity. Borland

has created many APIs specific to JBuilder that abstract some of the Java APIs in order to

provide database connectivity and data-aware object creation. The package

borland.sql.dataset has been created to provide data connectivity functionality that is

JDBC specific. Its classes are used in conjunction with the classes in the

borland.jbcl.dataset package, which provide general routines for data connectivity and

data management and manipulation.

85

DataSet is an abstract class in borland.jbcl.dataset package to provide a cursor for

accessing and navigating table data. The DataSet abstract class has been extended by

additional Borland classes so that data-aware objects can store the data.

StorageDataSet class (extends DataSet) has been created to support easy and

flexible manipulation and navigation of data in a common way regardless of how the data

was obtained. Data can be obtained from a remote server through the use of a query (or

QueryDataSet, which will be explained later). After data is stored in a StorageDataSet, it

can be connected to the data-aware objects to display and manipulate.

In order to connect to and retrieve data from a database, even though the straight

JDBC calls can be used throughout the application, JBuilder's borland.jdbc.dataset

package offers many high level objects. The Database class encapsulates a database

connection through JDBC to a data source and provides transaction support using local

caching. A Database object that has a connection to a database can be created by the

following Java statements:

Database db = new Database ();

db.setConnection(new

borland.sql.dataset.ConnectionDescriptor

("jdbc:BorlandBroker://131.120.1.91/sqlDB", "userid",

"psswd", false, "borland.jdbc.Broker.RemoteDriver "));

A ConnectionDescriptor object requires the data source URL as a first parameter,

then user id, password and finally the JDBC driver class name. JBuilder will generate all

of the statements above for the developers.

After creating a Database object that will handle the JDBC connection to the SQL

database and a QueryDescriptor object to store the query properties, a QueryDataSet

component (from borland.sql.dataset package) can be easily created. The QueryDataSet

component is an extension of its superclass (StorageDataSet) and provides functionality

to run a query against a table in a SQL database. The data contained in a QueryDataSet is

the result of the most recent query. The "result set" from the execution of the query is

stored in the QueryDataSet, allowing tremendous flexibility in navigation of the resulting

data.

DataModule is a powerful interface which developers implement when creating

multiple GUIs that will use the same data model in one application/applet. For example,

a designer will instantiate a DataModule object, and then will be able to graphically drag

and drop database query components into the object. This centralizes all database

86

requests in one object instead of having it dispersed throughout the client code.

According to JBuilder's online help manual "Data modules (often referred to as data

models) are specialized containers where data access components and their associated

properties are collected into a reusable component....The data module also provides a

centralized location where "business logic" can be stored. "Business logic" describes the

rules by which data is manipulated before and after the user (or client) sees the

data."[Ref. 2]. One of the most important reasons to have a data model concept in the

application/applet is to be able to access a single instance of the data model shared across

the application/applet instead of allocating memory for multiple instances.

JBuilder offers many data-aware objects which have the ability to display and

manipulate data. A Grid object can be used to display data in a tabular format and be

modified by updating the appropriate cell. All JBuilder data-aware components are

strictly tied to the JBuilder's database APIs. When a developer wishes to use Sun's JDBC

calls in order to make objects display data, a conversion must be done from the java.sql

objects to borland.sql.dataset and/or borland.jbcl.dataset objects.

3. Model Implementation

An application and applet were created which provided database connectivity

through the DataGateway server. The MS Access database resided on the same machine

as the DataGateway server, and the MS SQL database resided on a remote machine.

Creating the application was very quick and easy by using the objects and the

methods provided in the JBuilder environment and APIs. The Remote Driver of

DataGateway was used to handle the connection to both databases. We were able to

easily implement a user log on, and display of the data sources the user had access to, as

implemented in the RMI. With Jbuilder navigating among the data that was stored inside

the DataSet objects was very flexible. When the user selected the data source, a

connection to that source was created. A frame that contained the data-aware components

was then opened which allowed users to view and manipulate the data.

Two choice control objects were added to the frame to allow users to change the

data set view of the grid control object to a different table. One of the choice control

objects displayed the table names. This was accomplished using straight JDBC calls.

This proved that even though we were using JBuilder objects we could use appropriate

JDBC calls to manipulate them. For example borland.sql.dataset package provides a

Database class method (getMetaData()) which returns a JDBC DatabaseMetaData object.

87

Converting from application to applet is easy as long as certain applet restrictions

are met such as, there should be no menu objects. If the application is modular enough to

have reusable components, like generic frames and data modules, then using those

components in applets will save time in this conversion process.

After finishing the implementation of the application, we used the deployment

wizard to create a jar file (or it can create a zip file) which contained all the necessary

class files (either Borland JBuilder proprietary or JDK 1.1) to facilitate distribution.

Since the application was using Borland DataGateway Client to communicate with the

server for providing database access, we shipped broker.zip (contains client class files) to

the machines where our application was running. Detailed deployment issues can be

found in the Appendix D.

4. Summary

The integrated development environment (IDE) of JBuilder Client/Server Suite

provides an effective environment which makes projects easier to manage and organize.

DataGateway is an effecitve type III Java driver that can be used by any client application

via java.sql or whose functionality can be extended via Borland's database API. The

interface to DataGateway allows visual database components to be used for database

access and manipulation. JBuilder also contains a set of SQL tools, including a SQL

Builder, which allows developers to create flawless drag-and-drop queries for

QueryDataSet objects.

Even though JBuilder's database aware objects are tied to the JBuilder specific

APIs, most of the classes provide methods to handle JDBC calls where customization is

needed. When it comes to customizing the application/applet, JBuilder specific APIs

must be learned in order to reduce the overhead associated with the conversion between

JDBC methods and JBuilder database methods. JBuilder IDE offers an effective online

help manual where all Java APIs and JBuilder specific APIs have been documented.

As a suite, Borland DataGateway can be used to provide database access, via

java.sql calls. Developers can use the middleware driver in an RMI or socket

implementation, which may not use Jbuidler's database aware GUI components. The

IDE also includes support for Java Remote Method Invocation (RMI), so developers do

not need to exit the JBuilder IDE in order to run the rmic compiler. JBuilder also comes

with integrated CORBA/IIOP development tool that allow interoperability between

objects built in different languages, running on different machines or running in

88

heterogeneous distributed environments. Borlands Jbuilder is an effective Java enterprise

development tool.

C. CONCLUSION

One of the primary limitations of using a Commercial Java Database Solution is

that the designer cannot manipulate the "black box" middleware server. The middleware

server provides the access to the data source, but does not provide room for the designer

to embed any logic, so all logic must be embedded in the client application. This does

not provide a solid base for distributed computing solutions. This brings up the

flexibility provided via an RMI implementation, where you can install the logic wherever

it is convenient for the application. In the Symantec and Borland models, the client

application was making database specific calls, to a backend database engine via a

middleware server. The client code was directly tied to the backend database, which may

be a limitation.

Another limitation, is that designers are forced to learn a propritary API to take

full advantage of database aware components in using the tools to design the user

interface. At least with Jbuilder, the java.sql package could also be used, providing the

designer the flexibility to use the most appropriate API to perform a task. This also re-

enforced that Borland Datagateway can be used as a middleware solutions in designing a

database aware system. Symantec's dbAnywhere was only effective in implementin a

Symantec solution. For example, dbAnywhere could not be used as a type III

middleware driver in our RMI model, because it does not understand the java.sql API.

The implementation details are embedded in the client application, making the

code harder to understand. This may affect future code maintenance issues. For

example, the tools embed database functionality throughout the file. With the RMI

implementation all database manipulation functions went through a database logic

module, which provided a cleaner separation.

From the GUI designer's point of view, the RAD tools drastically decreased the

overhead associated with creating professional looking database aware application. So

depending upon the clients specifications, these tools are appropriate for simple form or

grid database aware applications.

89

90

VII. CONCLUSION

A. SYNOPSIS

Java is prepared to provide Enterprises relational database solutions. Sun's Java

Development Kit provides standardized packages which can be used for distributed

computing solutions. As demonstrated in the models, Java's sql package provides a robust

means of relational database access and manipulation. The communication link in

distributed computing can be resolved by using Java's net package for a customized

socket solution, or Java's RMI package for a more powerful object solution. The three

models we implemented demonstrated some of the capabilities and limitations of

combining the communication and the database requirements in providing a client/server

relational database aware system. The technology selected by a designer will depend

upon the customer's system specifications.

The multicast model, provided a customized way to allow clients to be servers

and to join multicast groups. This allowed group members the ability to multicast a

query to other group members who would service the request and respond. The

capabilities of the server objects were implemented in various logic modules. This

technology could also be used to analyze the database's of an organization to perform

statistical analysis. The price associated with this flexibility was the time it took to

implement the low level network protocol and define the communication protocols. In

this implementation there was no single dedicated database server. Each application

embedded database calls in its database logic module to connect to its local database

server. When a client application joined a multicast group, it then became a server.

Remote Method Invocation was the next layer of abstraction. This technology

encapsulated the low level network programming concerns, and allowed servers to pass

objects to client applications. Multiple remote objects provided various services to client

applications. In our model, a client would log onto the system via the RMI administrative

object which used JDBC to access an authorization database. It would ensure the client

was authorized access to the system and return a vector of databases the user was

authorized access to, which would populate a choice component. When the user made a

selection, the request would go to the RMI database object, which would provide

database functionality. In this implementation all database access and coordination was

encapsulated in the remote objects (servers). This implementation required system

designers to develop interfaces, implementation details and client applications.

91

The commercial tools provided a one stop solution for simple database aware

systems. dbAnywhere and DataGateway JDBC drivers provided the link to various

databases. The client application would contain that approriate classes that would allow it

to talk with the middleware driver. Database aware components facilitated designing the

client interface and in providing database manipulation. To take advantage of the

database aware components, we had to use the vendors version of database API instead

of java.sql. These tools provided a professional view, which is important for IT managers

to convince leery Enterprise managers to install Java applications on their Windows

desktop. The cost associated with the RAD tools was the decreased flexibility to

customize system solutions, and the requirement to use a proprietary database API. For

example, with RMI business logic could reside on the server, and be enforced on the

server or dynamically downloaded to the client to enforce. With the Java RAD tools, the

server is an untouchable black box, requiring the policy to be embedded in client

applications. This requires system administrators to ensure clients are using the most

recent version of each application.

B. AREAS FOR FURTHER RESEARCH

The objective of this thesis was to demonstrate how Java Database Connectivity

can be used to access heterogeneous relational database's in a client/server environment.

The models implemented demonstrate various configurations that can be used to provide

a database aware solution. There are a number of areas that warrant future research to

confirm the technology is prepared for commercial implementation. It is our assessment

that Java Remote Method Invocation provides the most robust area for distributed

computing solutions, so the majority of our recommendation for further research are in

regards to RMI.

1. Security

As distributed computing becomes more and more widely accepted and

employed, the assorted security risks associated continue to increase. This thesis did not

explore the security issues associated with distributed Java computing. According to Sun,

Java was designed for network based computing and security measures are integrated into

Java's design [Ref. 8]. In order to convince managers to accept a Java distributed

solution, it would be essential to understand the security strengths and weaknesses of the

technology.

92

With the introduction of JDK 1.2, RMI enhancements makes it possible to use

Secure Socket Layer (SSL). SSL is a network protocol that encrypts data sent and

returned from the remote object. If the information is intercepted it is unreadable. It also

ensures that client applications are dealing with legitimate servers and that only

authorized clients are able to connect to the server. This reinforces RMI as a solid

distributed computing technology.

2. Application Server

One of the attractive features of Java RMI is the ability to transport objects that

are serializable across the network. Java's awt package provides the objects to implement

a graphical user interface and java.awt.Component class implements serializable.

Container extends the component class, and Window extends the Container class, so in

concept a graphical user interface is serializable. This means that a user can log onto a

system, and make a method call to the RMI implemented application server, to get user

interface X. The interface will then be downloaded to the client. This will ensure the

client gets the most recent version of the interface, and streamline and organizations

version control. This is important in organizations that constantly change their database

aware applications, or have a dynamic workforce.

For example, if a user is promoted, the database administrator grants the user

access to the new database, say the maintenance database. The database administrator

also updates the users access authorization via the remote RMI data admin object. When

the user logs on, a list of databases the user is authorized to access is returned, and

populates a choice box. Since this may be the first time the user has seen the

maintenance database as a choice, he may not have the interface residing on his local

machine. When the user selects the maintenance database it invokes a method to get

maintenance interface version X. Since different clients will be authorized different

views and privileges, the version number depicts what the user is authorized.

The interface gets returned to the client application to be displayed. When the

user makes a selection, a request goes to the RMI database broker, that implements the

access. Such a dynamic use of RMI provides a solid means for organizations to control

which version of an application a client is using. If the application gets modified, the

next time the user logs on, he or she will get the most recent version of the interface.

93

3. Multicast Remote Objects

Our RMI implementation extended UnicastRemoteObject which provides support

for point-to-point active object references using TCP-based streams. As organizations

depend on information for critical information, fault tolerance becomes an issue. With a

single remote object implementation, if that remote object is not available, the system

will fail. A remote object may not be available due to the remote system going down or a

network failure. RMI also supports a MulticastRemoteObject. In this circumstance the

request will go to multiple remote objects. This provides the fault tolerance mechanism

that Enterprise organizations require for distributed computing. Quality of service factors

may also be considered with multiple remote objects. The client makes a remote method

call, and transparently the request goes out to N remote objects. If one remote server is

overloaded, it may not be able to process the request in a timely fashion and depending

upon how the client application was designed may block the client process from doing

any additional work. With multiple remote objects, there is a higher probability that one

of the remote objects will be capable of responding.

4. Object Oriented Database

As network bandwidth continues to increase, more complex objects such as video

segments, audio segments and pictures continue to be sent. Object oriented databases

provide a more suitable means to store the objects. It would be interesting to demonstrate

how a heterogeneous RMI database server could be developed using RMI. The remote

object may be able to provide access to relational or object oriented databases,

transparently to the client.

5. Common Object Request Broker Architecture (CORBA)

Java RMI only allows Java clients to talk with Java servers. In the ubiquitous

world of computing, the next level is to implement an object broker that is not language

dependent. A CORBA implementation could provide the next level of generality. A

performance comparison between our implementation and a Java/CORBA

implementation would be interesting.

C. CONCLUSION

Java's platform independence is an attractive feature for many Enterprise

organizations. Developer's enjoy the language because it is robust, fairly easy to learn,

94

and provides enormous flexibility. One of the strengths of Java technologies is that is'

allows designers to provide a total system solution in one programming language. Java

technologies can be used to provide internet functionality via applets, for creating

complex graphical user interfaces or for creating a distributed computing solution.

As the technology matures, so will development tools and JVM perfromance.

Initially these tools encapsulated and automated designing and implementing a graphical

user interface. This allows designers to focus on providing an effective solution, not on

the details of implementing an interface. The functionality of these tools continues to be

extended to encompass and automate database manipulation, and in Jbuilder case, to

interact with CORBA.

95

96

LIST OF REFERENCES

1. Borland International, Inc., Borland DataGateway for Java, Users Guide, 1997.

2. Borland International, Inc., Client/Server Suite Online Help Manual, 1997.

3. Biggs, M., Java IDEs Differ in Strengths, Info World, September 29,1997.

4. Coulouris, G., Dollimore, J., Kindberg, T., Distributed Systems Concept and

Design, Addison Wesley, 1996.

5. Dean, Andrew, Database Access From The Web, Master's Thesis, Naval

Postgraduate School, Monterey, California, March 1997.

6. Flanagan, D., Java Examples in a Nutshell, Second Edition, O'Reilly &

Associates, Inc., May 1997.

7. Flanagan, D., Java In a Nutshell, a Desktop Quick Reference, O'Reilly &

Associates, May 1997.

8. Gosling, J., McGilton, H., The Java™ Language Environment, A White Paper,

http://']ava.sun.com/docs/white/langenv/, May 1996.

9. Orfali, R., Harkey, D., Client Server Programming with Java and Corba, Wiley,

1996.

10. Orfali, R., Harkey, D., Edwards, J., The Essential Client/Server Survival Guide,

Wiley, 1996.

11. Papageorg, J., Getting Started with JDBC, Sun Microsystems,

http://developer.javasoft.com/developer/, August 1997.

12. JavaSoft, JDBC Drivers, Sun Microsystems,

http://java.sun.com/products/idbc/jdbc.drivers.html, September 1997.

97

13. JavaSoft, JDBC: A Java SQL API, Sun Microsystems, January 1997.

14. JavaSoft, The Java Language: An Overview, Sun Microsystems,

http ://j ava. sun, com/docs/overviews/j ava/j ava-overview-1 .html, 1995.

15. JavaSoft, Java Remote Method Invocation Specification-JDK 1.1 FCS,

http ://j ava. sun, com/docs/white/j avarmi .html, February 1997.

16. Java Remote Method Invocation- Distributed Computing for Java,

http://iava.sun.com/marketing/collateral/javarmi.html, November 1997.

17. Kramer, D., The Java Platform, A White Paper,

http://iava.sun.com/docs/white/platform/CreditsPage.doc.html, May 1996

18. Lindholm, T., Yellin, F., The Java Virtual Machine Specification, Addison-

Wesley, 1997.

19. Microsoft Corporation, ODBC 3.0 Reference Manual,

http://www.microsoft.com/data/odbc/download.htm

20. Naughton, P., The Java™ Handbook, The Authoritative Guide to the Java

Revolution, Osborne McGraw-Hill, 1996.

21. Reese, G., Database Programming with JDBC and Java, O'Reilly & Associates,

May 1997.

22. Renauld, Paul, Introduction to Client/Server Systems, Wiley, 1993.

23. Sood, M., Examining JDBC Drivers, Dr. Dobb's Journal, January 1998, p82-87.

24. Stallings, W., Data and Computer Communications, Prentice-Hall, Inc., 1997.

25. Stevenson, J., An Enterprise Information System For The Naval Security Group,

Master's Thesis, Naval Postgraduate School, Monterey, California, March 1998.

98

26. Sybase Inc., Sybase SQL Anywhere Users Guide Volume I, Sybase Inc, 1995.

27. JavaSoft, Java Database Programming, http://wvyrw.javasoft.com/.. ,/whitepapers,

February 1997.

99

100

APPENDIX A. JDBC REFERENCE TABLE

DriveManager

Methods Purpose

getConnection(String url, String id, String Returns a connection object to the database

password) located at the url.

Connection

Methods Purpose

close() Closes the connection to the database

commit () Update the table with the changes.

Required if user has disabled autoCommit

SetAutoCommit(boolean) Allows user to explicitly set to autoCommit

to false

GetMetaData() A Connection's database is able to provide

information describing its tables, its

supported SQL grammar, its stored

procedures, the capabilities of this

connection, etc.

CreateStatement() Returns a statement object. A Statement

object is used for executing a static SQL

statement and obtaining the results

produced by it.

PrepareCall(String) A SQL stored procedure

101

APPENDIX A. JDBC Reference Table (cont.)

Statement

Methods

execute(String sql)

ExecuteQuery(String sql)

ExecuteUpdate(String sql)

GetMoreResults()

GetResultSet()

Purpose

Executes the SQL statement, returns true if

the first result is a ResultSet and false if it

is an int. Useful if designer does not know

if the SQL statement was a result

producing SQL statement.

Executes the SQL statement, returns the

result set containing the query results.

Useful for SELECT statements.

Executes the SQL UPDATE, INSERT,

DELETE, CREATE statements that do not

produce a ResultSet. Returns an int of the

number of rows affected or zero

Moves to a Statement's next result. It

returns true if this result is a ResultSet.

getMoreResults also implicitly closes any

current ResultSet obtained with

getResultSet.

Returns a ResultSet if there are results, else

returns null

ResultSet

Methods

GetMetaData()

getXXX(int columnlndex)

getXXX(String columnName)

Purpose

Returns a ResultSetMetaData object which

contains the number of

Used with CallableStatement Objects.

Returns a data type represented by the

XXX (long, string, int, object) containing

the value in the current row based upon the

column index.

Same as above, based upon column name

102

APPENDIX B. MULTICAST SOCKET MODEL

This appendix provides the source code for the multicast socket implementation.

It is organized from the graphical user interface, down through the logic modules as seen

in the following figure.

mainFrame

GUI
listenFrame

Logic

joinGroupDlg

mcSendFrame

vectorlnt

IistenerThread

messageHandlerThread

<db>
dbLogic

<all>_
<dsn>

<net>
netLogic

<join>
<leave>

<respond>

<response>
responseLogic

<db>
<ack>

DB

mcSendListen(this, da, dp, acks, timer, message)

mcListenerThread

J-
/

- messagHandlerThrea

— dbLogic

— netLogic

responseLogic

Figure 23: Multicast Model

103

The evaluation environment must be set up exactly as described in Chapter IV in

order not to have problems during the execution of the program. The model is

implemented as follows: The object server (objectServer.class) must be started on a

machine where the l_BnParts database is (in our environment, it was on "roxanne"). The

object server will create the l_BnParts object, which will handle the requests that can not

be handled by the other database server objects and forwarded to it. Once the object

server is up and running, the main frame object can be started on the remote machines.

This frame object is the initial frame on which users have accesses to create the database

servers (in this case, a_CoParts, b_CoParts and c_CoParts), initialize multicast groups

and send messages either directly to a server or to a group.

The a_CoParts and the b_CoParts database server objects need to be created on

the same machine where object server is running. In our evaluation environment we

created the c_CoParts database server on a remote machine, namely "fido", which had a

data source name defined to the c_CoParts database on machine "cryptologist".

Database server objects have to be alive, in order to process a request. If a

message is sent before the database server is created, then that request will be timed out.

From the initial frame (we called it as mainFrame), users can open up the listenFrame of

database server objects (by clicking the appropriate name of the database server from the

DataSource menu item) in order to activate their listening threads for receiving requests.

Clicking the "start listening" button on listenFrame initiates the listening thread of that

database server. Then created database server starts to wait for a request from its listening

port and each received request will be displayed in the list box of the listenFrame.

Sending a direct request to a server can only be achieved from the main frame by

selecting the request type (db, net, and response) and the recipient and by typing the

message. Message types and their usage have been explained in Chapter IV in detail.

Multicast groups are formed by making the database server object join a the

group. From Group | InitializeGroup menu item (on the main frame) the joinGroupDlg

dialog box can be opened. The multicast group IP and port number and the name of the

database server object must be specified on that dialog box in order to send a "join" or a

"leave" message. When the object either joins or leaves the group successfully, it returns

an acknowledgement message which will be displayed inside the responses window in

joinGroupDlg dialog box. When a server object is a member of a multicast group, that

means, its multicast listening thread is running. When it leaves the group, its multicast

listening thread is destroyed.

104

A database server object can be a member of multiple multicast groups. In that

case, it will have that many multicast listening threads, and each one will be listening on

different port numbers.

From the main frame, by going through Group | Multicast Send menu items, one

can send a multicast message by supplying the necessary information (Multicast Group

IP address, port number and message) on the Multicast Request frame that pops up.

Multicast Request frame (mcSendFrame) allows to specify the request type, multicast

group IP and port number and the number of replies being waited after sending the

request (normally, it will be the total number of group members) and the actual message

body. The list box inside the Multicast Request Frame displays the replies in the order

they are received.

105

//File: mainFrame.Java
//Purpose: Initial frame, that allows user to create the db server
// objects, open up the the multicast frame GUI implemented
// with Visual Cafe
//***

import java.awt.*;
import java.util.*; //for vector

public class mainFrame extends Frame implements vectorlnt
{

networkUtil network = new networkUtil();
Vector resultVector = new Vector();

public mainFrame()
{

//{{INIT_CONTROLS
setLayout(null) ;
setvisible(false) ;
setSize(insets().left + insets().right + 550,insets().top +

insets().bottom + 400);
openFileDialogl = new java.awt.FileDialog(this);
openFileDialogl.setMode(FileDialog.LOAD);
openFileDialogl.setTitle("Open");
//$$ openFileDialogl.move(40,277);
panell = new Java.awt.Panel();
panell.setLayout(null);
panell.setBounds(insets().left + 12,insets().top + 12,528,144);
add(panell);
requestTypeChoice = new Java.awt.Choice ();
requestTypeChoice.addltem("db");
requestTypeChoice.addltem("net");
requestTypeChoice.addltem("response");
panell.add(requestTypeChoice);
requestTypeChoice.setBounds(96,0,118,24);
sendToChoice = new java.awt.Choice();
sendToChoice.addltem("a_CoParts")
sendToChoice.addltem("b_CoParts")
sendToChoice.addltem("c_CoParts")
panell.add(sendToChoice);
sendToChoice.setBounds(96,48,117,18);
labell = new Java.awt.Label("Request Type:");
labell.setBounds(12,0,108,24) ;
panell.add(labell);
label2 = new java.awt.Label("Send To:");
label2.setBounds(12,48,72,12);
panell.add(label2);
label3 = new Java.awt.Label("Message or Request");
label3.setBounds(300,60,163,16) ;
panell.add(label3);
messageTextField = new java.awt.TextFieldO;
messageTextField.setBounds(228,84,288,25);
panell.add(messageTextField);
sqlChoices = new java.awt.Choice();
sqlChoices.addltem("INSERT INTO parts VALUESU2, 'trailer', 50, 1)");
sqlChoices.addltem("DELETE FROM parts WHERE part = 'muffler'");
sqlChoices.addltem("CREATE TABLE invoices(id int, supplier char(20))");
sqlChoices.addltem("SELECT * FROM parts");
sqlChoices.addltem("UPDATE parts SET quantity = 10 WHERE part = 'brake

pad'");
sqlChoices.addltem("DROP TABLE testTable");
sqlChoices.addltem("SELECT part FROM parts WHERE part = 'tank'");

106

try {
sqlChoices.select(-1);

} catch (IllegalArgumentException e) { }
panell.add(sqlChoices);
sqlChoices.setBounds(228,24,276,24);
label4 = new Java.awt.Label("Sample SQL:");
label4.setBounds(324,0,78,21);
panell.add(label4);
sendButton = new Java.awt.Button();
sendButton.setActionCommand("button");
sendButton.setLabel("Send");
sendButton.setBounds(396,120,80,25);
sendButton.setBackground(new Color(12632256));
panell.add(sendButton);
clearTextFieldBttn = new Java.awt.Button();
clearTextFieldBttn.setActionCorranand("button") ;
clearTextFieldBttn.setLabel("Clear");
clearTextFieldBttn.setBounds(288,120,80,25);
ClearTextFieldBttn.setBackground(new Color(12632256));
panell.add(clearTextFieldBttn);
timeOut = new Java.awt.TextField();
timeOut.setText("15000");
timeOut.setBounds(108,96,60,22);
panell.add(timeOut);
timeOutLable = new Java.awt.Label("Set TimeOut (ms):");
timeOutLable.setBounds(0,96,96,20),•
panell.add(timeOutLable);
panel2 = new Java.awt.Panel();
panel2.setLayout(null);
panel2.setBounds(insets().left + 12,insets().top + 168,528,200);
add(panel2);
resultSetList = new Java.awt.List(0,false);
panel2.add(resultSetList);
resultSetList.setBounds(12,12,504,180) ;
clearListBttn = new Java.awt.Button();
clearListBttn.setActionCommand("button") ;
clearListBttn. setLabel("Clear ResultSet");
clearListBttn.setBounds(insets().left + 216,insets().top + 372,96,28)
clearListBttn.setBackground(new Color(12632256));
add(clearListBttn);
setTitle("Simulation Manager");

//}}

//{{INIT_MENUS
mainMenuBar = new Java.awt.MenuBar() ;
menul = new Java.awt.Menu("File");
miExit = new Java.awt.Menultemf"Exit") ;
menul.add(miExit);
mainMenuBar.add(menul);
group = new Java.awt.Menu("Group") ;
joinGroup = new Java.awt.Menultem("lnitilize Group");
group.add(joinGroup);.
mcSend = new Java.awt.Menultem("Multicast Send");
group.add(mcSend);
mainMenuBar.add(group);
becomeMember = new Java.awt.Menu("DataSource") ;
a_CoParts = new Java.awt.MenuItem("a_CoParts") ;
becomeMember.add(a_CoParts);
b_CoParts = new java.awt.Menultem("b_CoParts");
becomeMember.add(b_CoParts);
c_CoParts = new Java.awt.Menultem("c_CoParts");
becomeMember.add(c_CoParts);
mainMenuBar.add(becomeMember);

107

menu3 = new Java.awt.Menu("Help") ;
mainMenuBar.setHelpMenu(menu3) ;
miAbout = new Java.awt.Menultem("About..");
menu3.add(miAbout);
mainMenuBar.add(menu3);
setMenuBar(mainMenuBar);
//$$ mainMenuBar.move(4,277);
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymActionO;
miAbout.addActionListener(lSymAction);
miExit.addActionListener(lSymAction);
joinGroup.addActionListener(lSymAction);
sendButton.addActionListener(lSymAction);
clearTextFieldBttn.addActionListener(lSymAction);
clearListBttn.addActionListener(lSymAction);
mcSend.addActionListener(lSymAction);
Symltem lSymltem = new SymltemO;
sqlChoices.addltemListener(lSymltem);
a_CoParts.addActionListener(lSymAction);
b_CoParts.addActionListener(lSymAction);
c_CoParts.addActionListener(lSymAction);
//}}
}

public mainFrame(String title)
{

this();
setTitle (title);

}

public synchronized void show()
{

move(50, 50) ;
super.show();

}

static public void main(String args[])
{

mainFrame mainWindow = new mainFrame ();
mainWindow.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents
addNotify.

Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

108

Point p = components[i].getLocation() ;
p.translate(insets().left, insets().top),
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
j ava.awt.FileDialog openFileDialogl ;
java.awt.Panel panell;
j ava.awt.Choice requestTypeChoice;
Java.awt.Choice sendToChoice;
java.awt.Label label1;
java.awt.Label label2;
Java.awt.Label label3;
j ava.awt.TextField messageTextField;
Java.awt.Choice sqlChoices;
Java.awt.Label label4;
java.awt.Button sendButton;
j ava.awt.Button clearTextFieldBttn;
java.awt.TextField timeOut;
Java.awt.Label timeOutLable;
java.awt.Panel panel2;
java.awt.List resultSetList;
java.awt.Button clearListBttn;
//}}

//{{DECLARE_MENUS
java.awt.MenuBar mainMenuBar;
java.awt.Menu menul;
java.awt.Menultem miExit;
java.awt.Menu group;
java.awt.Menultem joinGroup;
java.awt.Menultem mcSend;
java.awt.Menu becomeMember;
java.awt.Menultem a_CoParts;
java.awt.Menultem b_CoParts;
java.awt.Menultem c_CoParts;
j ava.awt.Menu menu3;
java.awt.Menultem miAbout;
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == mainFrame.this)

Framel_WindowClosing(event);
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
dispose(); // free the system resources
System.exit(0); // close the application

}

class SymAction implements java.awt.event.ActionListener

109

public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == miAbout)

miAbout_Action(event);
else if (object == miExit)

miExit_Action(event) ;
else if (object == joinGroup)

joinGroup_Action(event) ;
else if (object == sendButton)

sendButton_Action(event);
else if (object == clearTextFieldBttn)

clearTextFieldBttn_Action(event);
else if (object == clearListBttn)

clearListBttn_Action(event);
else if (object == mcSend)

mcSend_Action(event);
else if (object == a_CoParts)

aCoParts_Action(event);
else if (object == b_CoParts)

bCoParts_Action(event);
else if (object == c_CoParts)

cCoParts_Action(event);
}

}

void miAbout_Action(java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from About Create and show as modal
(new AboutDialog(this, true)).show();
//}}

}

void miExit_Action(java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from Exit Create and show as modal
(new QuitDialog(this, true)).show();
//}}

}

void miOpen_Action(java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from Open... Show the OpenFileDialog
openFileDialogl.show();
//}}

}

void joinGroup_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Create and show as non-modal
(new joinGroupDlg(this, false)).show();

}

void sendButton_Action(java.awt.event.ActionEvent event)
{

110

StringBuffer buff = new StringBuffer() ;
String type = requestTypeChoice.getSelectedItem();
String sendTo = sendToChoice.getSelectedItem();
String message = messageTextField.getText();
int timer = Integer.parselnt(timeOut.getText());

if(type.equals("net")){
buff.append(type);
buff.append(" ");
buff.append(message);
buff.append(" ");

)
else if(type.equals("db")){

String sql = message.toLowerCase();
buff.append(type);
buff.append(" ");
buff.append(sendTo);
buff.append(" ");
buff.append(sql);

}
else if(type.equals("response"))(

buff.append(type);
buff.append(" ");
buff.append("net");
buff.append(" ");
buff.append(message);
buff.append(" ");

}

String request = new String(buff);
//send the request
network.sendListenForResponses(this, sendTo, request, timer);

}

void clearTextFieldBttn_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.
//{{CONNECTION
// Clear the text for TextField
messageTextField.setText("");
//}}

}

public void updateVector(String message)
{

resultVector.addElement(message);
resultSetList.addltem(message);

}

void clearListBttn_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Clear the List
resultSetList.removeAll();
//}}

111

public void updateResultList(String message)

{
resultVector.addElement(message);

//post to response List
StringTokenizer tok = new StringTokenizer(message, ",");

if(message == null){
resultSetList.addltemC'No results were found ");

}else{
int count = tok.countTokens();
for (int ix = 1; ix <= count; ix++){

String tuple = tok.nextToken();
resultSetList.addItem(tuple);

}//end for
}//end else

}

//for interface
public boolean mcListenO
{

return true;
}

public void setMCListen(boolean flag){}

void mcSend_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Create and show the Frame
(new mcSendFrame()).show() ;
//}}

}

class Symltem implements java.awt.event.ItemListener

{
public void itemStateChanged(Java.awt.event.ItemEvent event)
{

Object object = event.getSource() ;
if (object == sqlChoices)

sqlChoices_ItemStateChanged(event);

}
}

void sqlChoices_ItemStateChanged(Java.awt.event.ItemEvent event)

{
// to do: code goes here.

//{{CONNECTION
// Set the text for TextField... Get the current item text
messageTextField.setText(sqlChoices.getSelectedltem()) ;
//}}

}

void aCoParts_Action(Java.awt.event.ActionEvent event)

{
// to do: code goes here.

//{{CONNECTION

112

label

label

label

// Create and show the Frame with a title... Get the Menultem's

(new listenFrame(a_CoParts.getLabel())).show();
//}}

a_CoParts.setEnabled(false);
}

void bCoParts_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Create and show the Frame with a title... Get the Menultem's

(new listenFrame(b_CoParts.getLabel())).show();
b_CoParts.setEnabled(false);
//}}

}

void cCoParts_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Create and show the Frame with a title... Get the Menultem's

(new listenFrame(c_CoParts.getLabel())).show();
c_CoParts.setEnabled(false);
//}}

}
}

// End File: mainFrame.java

// File: listenFrame.java
// Purpose: A simple frame, that allows user to initiate the listen
// thread of the database servers and allows to collect
// messges received so far.
// GUI implemented with Visual Cafe

import java.awt.*;
import Symantec.itools.awt.util.ToolBarPanel;

public class listenFrame extends Frame implements vectorlnt
{

//flag checked by the mcListenerThread, set by netLogic
boolean mcListen = false;

public listenFrame()
{

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setvisible(false);

113

setSize(insets{).left + insets().right + 400,insets().top +
insets().bottom + 300);

toolBarPanell = new Symantec.itools.awt.util.ToolBarPanel{);
toolBarPanell.setLayout(new FlowLayout(FlowLayout.LEFT,0,0));
toolBarPanell.setBounds(insets().left + 0,insets().top + 0,395,36);
add(toolBarPanell);
privateLine = new Java.awt.Button();
privateLine.setActionCommand("button");
privateLine.setLabel("Start Listening");
privateLine.setBounds(0, 0, 93, 23) ;
privateLine.setBackground(new Color(12632256));
toolBarPanell.add(privateLine);
clearList = new java.awt.Button();
clearList.setActionCommand("button");
clearList.setLabel("Clear List");
clearList.setBounds(93,0,67,23);
clearList.setBackground(new Color(12632256));
toolBarPanell.add(clearList);
hideWindow = new Java.awt.Button();
hideWindow.setActionCommand("button");
hideWindow.setLabel("Hide Window");
hideWindow.setBounds(160,0,87, 23);
hideWindow.setBackground(new Color(16776960));
toolBarPanell.add(hideWindow);
responseList = new Java.awt.List(0,false);
add(responseList);
responseList.setBounds(insets().left + 12,insets().top + 96,382,193);
mcCheckBox = new java.awt.Checkbox("mc Listener is Active");
mcCheckBox.setBounds(insets() .left + 252,insets () .top + 36,144,17);
add(mcCheckBox);
setTitle("Untitled");
//}}

//{{INIT_MENUS
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindowO;
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymActionO;
privateLine.addActionListener(ISymAction);
clearList.addActionListener(ISymAction);
hideWindow.addActionListener(ISymAction);

//}}
}

public listenFrame(String title)
{

this();
setTitle(title);

}

public synchronized void show()
{

move(50,50);
super.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

114

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets ().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{(DECLARE_CONTROLS
Symantec.itools.awt.util.ToolBarPanel toolBarPanell;
java.awt.Button privateLine;
java.awt.Button clearList;
Java.awt.Button hideWindow;
java.awt.List responseList;
java.awt.Checkbox mcCheckBox;

//}}

//{{DECLARE_MENUS
//}}

class SymWindow extends java.awt.event.WindowAdapter
. {

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == listenFrame.this)

Framel_WindowClosing(event);
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)
{

Object object = event.getSource ();
if (object == privateLine)

privateLine_Action(event);
else if (object == clearList)

clearList_Action(event);
else if (object == hideWindow)

hideWindow_Action(event);
}

}

void privateLine_Action(java.awt.event.ActionEvent event)

115

String dataSource = this.getTitle();
int listenPort = portNumbers.getListenPort(dataSource);

listenerThread listen = new listenerThread(this, dataSource,
listenPort);

//listenerThread listen = new listenerThread(dataSource, listenPort)
listen.start();

//{{CONNECTION
// Disable the Button
privateLine.setEnabled(false) ;

//}}
}

//vectorlnt Implementation
public void updateVector(String message)

{
//post to response List
responseList.addltem(message) ;

}

//vectorlnt Implementation
public void updateResultList(String message)

{
//do nothing

}

//allow mcast listner to check if still in the group
public boolean mcListenO
{

return mcListen;
}

//sets the flag, done by netLogic
public void setMCListen(boolean flag)
{

mcListen = flag;
if(flag){

mcCheckBox.setState(true);
}else

mcCheckBox.setState(false);

}

void clearList_Action(Java.awt.event.ActionEvent event)

{
// to do: code goes here.

//{{CONNECTION
// Clear the List
responseList.removeAll();
//}}

}

void hideWindow_Action(Java.awt.event.ActionEvent event)

{
// to do: code goes here.

//{{CONNECTION

116

// Move Frame to the back
toBackO ;
//}}

void closeButton_Action(Java.awt.event.ActionEvent event)
{
/* // to do: code goes here.

String myName = this.getTitle();
if(myName.equals("a_CoParts")){

mainWindow.a_CoParts.setEnabled(true);
}else if(myName.equals("b_CoParts")){

mainWindow.b_CoParts.setEnabled(true) ;
}else if(myName.equals("c_CoParts")){

mainWindow.c_CoParts.setEnabled(true) ;
}

*/

}
}
//***+*****************•*•***

// End File: listenFrame.Java

// File: mcSendFrame.Java
// Purpose: A simple frame, that allows user to create and send
// multicast requests based on the communication protocol
// we implemented
// GUI implemented with Visual Cafe

import java.awt.*;
import java.util.*;

import Symantec.itools.awt.shape.HorizontalLine;
public class mcSendFrame extends Frame implements vectorlnt
{

Vector resultVector = new Vector();
networkUtil network = new networkUtil();

public mcSendFrame()
{

// This code is automatically generated by Visual Cafe when you
// add components to the visual environment. It instantiates

• // and initializes the components. To modify the code, only use
// code syntax that matches what Visual Cafe can generate, or
// Visual Cafe may be unable to back parse your Java file into
// its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setVisible(false);
setSize(insets().left + insets().right + 500,insets().top +

insets().bottom + 425);
panell = new java.awt.Panel();
panell.setLayout(null);
panell.setBounds(insets().left + 12,insets().top + 12,481,168);
add(panell);
requestTypeChoice = new java.awt.Choice();
requestTypeChoice.addltem("db");
requestTypeChoice.addltem("net");
requestTypeChoice.addltem("response");
panell.add(requestTypeChoice);

117

D")

char(20))'

•brake pad'")

'tank'")

requestTypeChoice.setBounds(96,0,118,24);
labell = new Java.awt.Label("Request Type:");
labell.setBounds(12,0,108,24);
panell.add(labell);
label3 = new Java.awt.Label("Message or Request");
label3.setBounds(264,60,163,16);
panell.add(label3);
messageTextField = new java.awt.TextField();
messageTextField.setBounds(216,84,2 64,25);
panell.add(messageTextField);
sendButton = new java.awt.Button ();
sendButton.setActionCommand("button");
sendButton.setLabel("Send");
sendButton.setBounds(348,120,80,25);
sendButton.setBackground(new Color(12632256));
panell.add(sendButton);
clearTextFieldBttn = new Java.awt.Button();
clearTextFieldBttn.setActionCommand("button");
clearTextFieldBttn.setLabel("Clear");
ClearTextFieldBttn.setBounds(240,120,80,25);
clearTextFieldBttn.setBackground(new Color(12632256));
panell.add(clearTextFieldBttn);
mcIP = new java.awt.TextField();
mcIP.setText("230.0.0.1");
mcIP.setBounds(108,36,72,19);
panell.add(mcIP);
mcPort = new java.awt.TextField();
mcPort.setText("4 44 6");
mcPort.setBounds(108,72,48,20) ;
panell.add(mcPort);
label2 = new java.awt.Label("Group IP:");
label2.setBounds(12,36,60,18);
panell.add(label2);
label4 = new Java.awt.Label("Group Port:");
label4.setBounds(12,72,72,20);
panell.add(label4);
acksTextField = new Java.awt.TextField();
acksTextField.setText("1");
acksTextField.setBounds(108,108,42,19);
panell.add(acksTextField);
label5 = new java.awt.Label("# of Replies:");
label5.setBounds(12,108,70,19);
panell.add(label5);
sqlChoices = new java.awt.Choice ();
sqlChoices.addItem("INSERT INTO parts VALUES(12, 'trailer', 50,

sqlChoices.addltem("DELETE FROM parts WHERE part = 'muffler'");
sqlChoices.addltem("CREATE TABLE invoices(id int, supplier

sqlChoices.addltem("SELECT * FROM parts");
sqlChoices.addltem("UPDATE parts SET quantity =10 WHERE part =

sqlChoices.addltem("DROP TABLE testTable");
sqlChoices.addltem("SELECT part FROM parts WHERE part =

try {
sqlChoices.select(-1);

} catch (IllegalArgumentException e) { }
panell.add(sqlChoices);
sqlChoices.setBounds(228,24,240,24);
timeOut = new java.awt.TextField();
timeOut.setText("15000");
timeOut.setBounds(108,144,48,19);

118

panell.add(timeOut);
label6 = new Java.awt.Label("Set Timer (ms):");
label6.setBounds(12,144,89,17);
panell.add(label6);
label7 = new Java.awt.Label("Sample SQL");
label7.setBounds(276,0,131,16);
panell.add(label7);
horizontalLinel = new

Symantec.itools.awt.shape.HorizontalLine();
horizontalLinel.setBounds(-12,179,4 92,1);
panell.add(horizontalLinel);
resultSetList = new Java.awt.List(0,false);
add(resultSetList);
resultSetList.setBounds(insets().left + 12,insets().top

204,466,165);

384,96,28),

384,71,29)

clearListBttn = new Java.awt.Button();
clearListBttn.setActionCommand("button");
clearListBttn.setLabel("Clear ResultSet");
clearListBttn.setBounds(insets().left + 252,insets().top

clearListBttn.setBackground(new Color(12632256));
add(clearListBttn);
closeButton = new Java.awt.Button();
closeButton.setActionCommand("button");
closeButton.setLabel("Close") ;
closeButton.setBounds(insets().left + 132,insets().top +

closeButton.setBackground(new Color(16711680));
add(closeButton);
setTitle("Multicast Request");
//}}

//{{INIT_MENUS
//}}

//{(REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymActionO;
clearListBttn.addActionListener(lSymAction);
closeButton.addActionListener(lSymAction);
clearTextFieldBttn.addActionListener(lSymAction);
sendButton.addActionListener(lSymAction);
Symltem ISymltem = new Symltem();
sqlChoices.addltemListener(ISymltem) ;
//}}

}

public mcSendFrame(String title)
{

thisO ;
setTitle(title);

}

public synchronized void show()
{

move(50, 50);
super.show();

}

public void addNotifyO
{

119

// Record the size of the window prior to calling parents
addNotify.

Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top

+ insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)

{
Point p = components[i].getLocation();
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
Java.awt.Panel panell;
Java.awt.Choice requestTypeChoice;
Java.awt.Label labell;
Java.awt.Label label3;
Java.awt.TextField messageTextField;
Java.awt.Button sendButton;
Java.awt.Button clearTextFieldBttn;
Java.awt.TextField mcIP;
java.awt.TextField mcPort;
Java.awt.Label label2;
Java.awt.Label label4;
j ava.awt.TextField acksTextField;
java.awt.Label label5;
java.awt.Choice sqlChoices;
java.awt.TextField timeOut;
java.awt.Label label6;
java.awt.Label label7;
Symantec.itools.awt.shape.HorizontalLine horizontalLinel;
java.awt.List resultSetList;
java.awt.Button clearListBttn;
java.awt.Button closeButton;
//}}

//{{DECLARE_MENUS
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)

{
Object object = event.getSource();
if (object == mcSendFrame.this)

Framel_WindowClosing(event);
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)

120

{

hide(); // hide the Frame
}

class SymAction implements Java.awt.event.ActionListener
{

public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == clearListBttn)

clearListBttn_Action(event);
else if (object == closeButton)

closeButton_Action(event);
else if (object == clearTextFieldBttn)

clearTextFieldBttn_Action(event);
else if (object == sendButton)

sendButton_Action(event);
}

}

void clearListBttn_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Clear the List
resultSetList.removeAll();
//}}

}

void closeButton_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Hide the Frame
setVisible(false);
//}}

}

void clearTextFieldBttn_Action(j ava.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Clear the text for TextField
messageTextField.setText("");
//}}

}

void sendButton_Action(Java.awt.event.ActionEvent event)
{

StringBuffer buff = new StringBuffer();
String type = requestTypeChoice.getSelectedItem();
String groupIP = mcIP.getText ();
int groupPort = Integer.parselnt(mcPort.getText());
int acks = Integer.parselnt(acksTextField.getText());
String message = messageTextField.getText();

if(type.equals("net")){
buff.append(type);
buff.append(" ");
buff.append(message);

121

buff.append(" ");
}
else if(type.equals("db")){

String sql = message.toLowerCase();
buff.append(type);
buff.append(" all ");
buff.append(sql);

}
else if(type.equals("response")){

buff.append(type);
buff.append(" ");
buff.append(message);
buff.append(" ");

}

String request = new String(buff);

int timer = Integer.parselnt(timeOut.getText());

//send the request
network.mcSendListenForResponses(this, groupIP, groupPort, acks,

timer, request);
}

public void updateVector(String message)
{

resultVector.addElement(message) ;
resultSetList.addltem(message) ;

}

private synchronized void updateResultSet(String message)
{

resultVector.addElement(message);

//post to response List
StringTokenizer tok = new StringTokenizer(message, ",");

if(message == null){
resultSetList.addltem("No results were found ");

}else{
int count = tok.countTokens();
for (int ix = 1; ix <= count; ix++){
String tuple = tok.nextToken();
resultSetList.addltem(tuple);
}//end for

}//end else

}

public void updateResultList(String message)
{

updateResultSet(message);

}//end function

//for interface
public boolean mcListenO
{

return true;
}

public void setMCListen(boolean flag){}

122

class Symltem implements Java.awt.event.ItemListener
{

public void itemStateChanged(Java.awt.event.ItemEvent event)
{

Object object = event.getSource() ;
if (object == sqlChoices)

sqlChoices_ItemStateChanged(event);
}

}

void sqlChoices_ItemStateChanged(java.awt.event.ItemEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Set the text for TextField... Get the current item text
messageTextField.setText(sqlChoices.getSelectedItem());

}
}//end class

// End File: mSendFrame.java

// File: joinGroupDlg.java
// Purpose: A dialog object, that allows database servers to join
// to thje specified multicast group (based on the
// IP address and port number)
// GUI implemented with Visual Cafe
//***

import java.awt.*;
import java.util.*; //for vector

public class joinGroupDlg extends Dialog implements vectorInt
{

networkUtil network = new networkUtil();

Vector resultVector = new Vector();

public joinGroupDlg(Frame parent, boolean modal)
{

super(parent, modal);

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setvisible(false);
setSize (insets () .left + insets () .right + 451, insets (). .top +

insets().bottom + 270);
panell = new java.awt.Panel() ;
panell.setLayout(null) ;
panell.setBounds(insets().left + 12,insets().top + 12,408,80);
add(panell);.
labell = new java.awt.Label("Group IP:");
labell.setBounds(12,12,103,22);

123

panell.add(labeil);
mcPort = new Java.awt.TextField();
mcPort.setText("4446");
mcPort.setBounds(132,4 8,4 8,20);
panell.add(mcPort);
label2 = new java.awt.Label("Group Port #:");
label2.setBounds(0,4 8,110,22);
panell.add(label2);
recipiant = new java.awt.TextField();
recipiant.setBounds(252,12,136,20);
panell.add(recipiant);
joinGroupButton = new Java.awt.Button();
j oinGroupButton.setActionCommand("button");
joinGroupButton.setLabel("Join Group");
joinGroupButton.setBounds(276,48, 95,25);
joinGroupButton.setBackground(new Color(12632256));
panell.add(joinGroupButton);
mcIP = new Java.awt.TextField();
mcIP.setText("230.0.0.1") ;
mcIP.setBounds(120,12,72,19);
panell.add(mcIP);
panel2 = new Java.awt.Panel();
panel2.setLayout(null);
panel2.setBounds(insets().left + 12,insets () .top + 108,204,132);
add(panel2);
label3 = new Java.awt.Label("Responses:");
label3.setBounds(4 8,0,72,12);
panel2.add(label3) ;
responseList = new Java.awt.List(0,false);
panel2.add(responseList);
responseList.setBounds(0,24,180,84);
closeButton = new Java.awt.Button();
closeButton.setActionCommand("button") ;
closeButton.setLabel("Close");
closeButton.setBounds(insets().left + 156, insets().top + 240,71,29);
closeButton.setBackground(new Color(12632256));
add(closeButton);
leaveGroupButton = new Java.awt-Button();
leaveGroupButton.setActionCommand("button");
leaveGroupButton.setLabel("Leave Group");
leaveGroupButton.setBounds(insets() .left + 288,insets().top + 108,95,25)
leaveGroupButton.setBackground(new Color(16711680));
add(leaveGroupButton);
setTitle("Join Group");
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction ISymAction = new SymAction();
joinGroupButton.addActionListener(ISymAction);
closeButton.addActionListener(ISymAction);

leaveGroupButton.addActionListener(ISymAction);
//}}

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify();

124

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets()-top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

public joinGroupDlg(Frame parent, String title, boolean modal)
{

this(parent, modal);
setTitle(title);

}

public synchronized void show()
{

Rectangle bounds = getParent().bounds();
Rectangle abounds = bounds();

move(bounds.x + (bounds.width - abounds.width)/ 2,
bounds.y + (bounds.height - abounds.height)/2);

super.show();
}

//{(DECLARE_CONTROLS
java.awt.Panel panel1;
java.awt.Label labell;
java.awt.TextField mcPort;
java.awt.Label label2;
java.awt.TextField recipiant;
j ava.awt.Button j oinGroupButton;
java.awt.TextField mcIP;
Java.awt.Panel panel2;
Java.awt.Label label3;
Java.awt.List responseList;
Java.awt.Button closeButton;
j ava.awt.Button leaveGroupButton;
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(Java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == joinGroupDlg.this)

Dialogl_WindowClosing(event);
}

}

void Dialogl_WindowClosing(java.awt.event.WindowEvent event)

125

{
hide() ;

}

class SymAction implements Java.awt.event.ActionListener

{
public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource() ;
if (object == joinGroupButton)

joinGroupButton_Action(event);
else if (object == closeButton)

closeButton_Action(event);
else if (object == leaveGroupButton)

leaveGroupButton_Action(event);
}

}

void leaveGroupButton_Action(Java.awt.event.ActionEvent event)
{

String IP = mcIP.getText();

String mailTo = recipiant.getText() ;

String message = leaveGroup(IP);

network.sendListenForResponses(this, mailTo, message, 15000);

// Clear the text for TextField
recipiant.setText (" ");

}

void joinGroupButton_Action(Java.awt.event.ActionEvent event)

{
// to do: code goes here.
//get the mcIP
String IP = "230.0.0.1";
IP = mcIP.getText ();
int port = 44 4 6;
port = Integer.parselnt(mcPort.getText());
String mailTo = null;
mailTo = recipiant.getText();
String message = null;
message = joinGroup(IP, port);

network.sendListenForResponses(this, mailTo, message, 15000);

// Clear the text for TextField
recipiant.setText("");

}

public String joinGroup(String da, int dp)
{

//createm message
StringBuffer mBuff = new StringBuffer("net join");
mBuff = mBuff.append(" ");
mBuff = mBuff.append(da); //230.0.0.1
mBuff = mBuff.append(" ");
mBuff = mBuff.append(dp); //4446
mBuff = mBuff.append(" ");
String message = new String(mBuff);

return message;

126

}

public String leaveGroup(String da)
{

//createm message
StringBuffer mBuff = new StringBuffer("net leave");
mBuff = mBuff.append(" ");
mBuff = mBuff.append(da); //230.0.0.1
mBuff = mBuff.append(" ");
String message = new String(mBuff);

return message;

public void updateVector(String message)
{

resultVector.addElement(message);

//post to response List
responseList.addltem(message);

}

public void updateResultList(String message)
{

//do nothing
}

//for interface
public boolean mcListenO
{

return true;
}
public void setMCListen(boolean flag){)

void closeButton_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Hide the Dialog
setVisible(false);
//}}

}
}//end class

// End File: joinGroupDlg.Java

// File: vectorlnt.Java
// Purpose: The interface between logic objects and the GUI
// that displays the results

import java.util.*; //for vecor

public interface vectorlnt
{

//sends a message to mother
public abstract void updateVector(String message);

127

//tells mom its a resultSet
public abstract void updateResultList(String message);

// checks mothers mcListen flag, used by mcListenThread
// to evaluate if still in group or not
public abstract boolean mcListen();
public abstract void setMCListen(boolean flag);

}

// End File: vectorlnt.Java

// File: listenerThread.Java
// Purpose: Implementation of a generic listener thread for database.
// server objects. This thread is spawned when the database
// objects are created and listens on a specified port.
// This listener thread spawns a message handler thread and
// sends the message to it.
//**■***************

import java.io.*;
import java.net.*;
import java.util.*;

public class listenerThread extends Thread{

static int threadNumber = 1; //threadID
protected InetAddress address = null; //who sent me the packet
protected DatagramPacket inPacket = null; //response packets

int listenPort = 0;
int sendPort = 0;
DatagramSocket listenerSocket = null; //socket to listen
String name = null;
vectorlnt mother = null;
boolean haveMom = false;

private static final boolean debug = true;

// Function: clientListenThread(int listenPort)
// Purpose: Constructor, user specifies port to listent to
// for a message
//************************•*•***************************

public listenerThread(String name, int listenPort)

{
super(name);
System.out.println("Created listenerThread " + name + " I " +

listenPort);
this.listenPort = listenPort;
try{

listenerSocket = new DatagramSocket(listenPort);
}catch(SocketException e){

System.err.println("Client Thread Error " + e);
}catch(IOException e){

System.err.println("Client Thread Error " + e);
}

}//end constructor

128

// Function: clientListenThread(int listenPort)
// Purpose: Constructor, user specifies port to listent to
// for a message
//****+*********************************+***************

public listenerThread(vectorInt mother, String name, int listenPort)
{

super(name);
this.mother = mother;
this.name = name;
this.haveMom = true;

System.out.println("Created listenerThread " + name + " | " + listenPort
+ " mother " + mother);

this.listenPort = listenPort;
try{

listenerSocket = new DatagramSocket(listenPort);
}catch(SocketException e){

System.err.println("Client Thread Error " + e);
}catch(IOException e){

System.err.println("Client Thread Error " + e);
}

}//end constructor

// Function: void run()
// Purpose: Starts the listener thread

public void run()
{

//forever loop
while(true){

try{
//creat a inPacket for incoming messages
byte [] buff = new byte[512];
inPacket = new DatagramPacket(buff, buff.length);

//wait to recieve a message
listenerSocket.receive(inPacket);
System.out.println(this.getName() + " listnerThread has recived a

packet");

if(haveMom){
System.out.println("creating a mother message HandlerThread");
messageHandlerThread handler = new messageHandlerThread(mother,

inPacket, this.getName());
handler.start();

}else {
System.out.println("creating a non—mother message

HandlerThread") ;
messageHandlerThread handler = new

messageHandlerThread(inPacket, this.getName());
handler.start();

}

}catch (IOException e) {
System.out.println(e);

}//end try
}//end while

}//end run

}//end class

129

// End File: listenerThread.Java

// File: mcListenerThread.Java
// Purpose: When a client joins a multicast group, this
// (mcListenerThread)thread is spawned to monitor and
// display incoming messages. Each object in the group has
// one multicast listener and one private listener threrad.
//•-it***

import java.io.*;
import java.net.*;
import java.util.*;

public class mcListenerThread extends Thread{

boolean inGroup = true;
protected MulticastSocket socket = null;
protected InetAddress address = null;
protected DatagramPacket packet = null;
static int threadNumber = 1;
vectorInt mother = null;
boolean haveMom = false;

public mcListenerThread(String groupID, int groupSocket, String owner)
{

this.setName(owner);
try{

//join the Multicast group
socket = new MulticastSocket(groupSocket);
address = InetAddress.getByName(groupID);
socket.joinGroup(address);

}catch(UnknownHostException e){
System.err.println("Client Thread Error " + e) ;

}catch(IOException e){
System.err.println("Client Thread Error " + e) ;

}
}//end constructor

public mcListenerThread(vectorlnt mother, String groupID, int groupSocket,
String owner)

{
this.setName(owner);
this.mother = mother;
this.haveMom = true;

try{

//join the Multicast group
socket = new MulticastSocket(groupSocket);
address = InetAddress.getByName(groupID);
socket.joinGroup(address);

}catch(UnknownHostException e){
System.err.println("Client Thread Error " + e);

}catch(IOException e){
System.err.println("Client Thread Error " + e);

}
}//end constructor

130

//start thread
public void run()
{

if(haveMom){
System.out.println("mcListenerThread with mom " + mother + " " + "

status " + mother.mcListen());

while(mother.mcListenO }{

byte [] buff = new byte[512];
packet = new DatagramPacket(buff, buff.length);

try{
//recieve a message
socket.receive(packet);

//pass root name
StringTokenizer tok = new StringTokenizer(this.getName()) ;
String rootName = tok.nextToken();
//spawn a request handler thread
messageHandlerThread handler = new messageHandlerThread(mother,

packet, rootName);
handler.start();
System.out.println("spawning a messageHandlerThread for " +

mother);

}catch (IOException e) {
System.out.println(e);
System.exit(-1);

}
}//end while

try{
socket.leaveGroup(address);
socket.close();

}catch(IOException e)(
System.err.println("Client Thread Error " + e);

}

}//end if

//for the orphans
else{

//forever loop
while(inGroup){

//creat a inPacket for incoming messages
byte [] buff = new byte[256],•
packet = new DatagramPacket(buff, buff.length);

try{
//recieve a message
socket.receive(packet);

//pass root name
StringTokenizer tok = new StringTokenizer(this.getName());
String rootName = tok.nextToken();
//spawn a request handler thread
if(haveMom){

messageHandlerThread handler = new
messageHandlerThread(mother, packet, rootName);

handler.start();

131

System.out.println("spawning a messageHandlerThread for " +
mother);

}else{
messageHandlerThread handler = new

messageHandlerThread(packet, rootName);
handler.start() ;

}

}catch (IOException e) {
System.out.println(e) ;
System.exit(-1) ;

}
}//end while

try{
socket.leaveGroup(address) ;
socket.close();

}catch(IOException e){
System.err.println("Client Thread Error " + e) ;

}

}//end else
}//end run

public void leaveGroup()
{

inGroup = false;
}

}//end class

// End File: mcListenerThread.Java

// File: messageHandlerThread.Java
// Purpose: When a process, either a listenerThread or mcListenerThread
// recieves a message it spawns off a messageHandlerThread which
// invokes the appropriate business logic to process the
// request
//********************■***********************************+***********

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;

public class messageHandlerThread extends Thread
{

static int mcID = 1;

private static final boolean debug = true; //for debugging

DatagramPacket myPacket = null;
InetAddress senderAddress = null;
int senderPort = 0;

String threadName = null;

vectorlnt mother = null;
boolean haveMom = false;

132

//keep track of mcgroups thread has joined
Vector mcVector = null;
String message = "",-
//declare a dbServer
dbUtil dbServer = new dbUtilO;
networkUtil network = new networkUtil();

//***•*************

// Function:messageHandlerThread(DatagramPacket inPacket, int threadNumber)
// Purpose: Thread constructor, takes the datagram packet and it's assigned
// thread number

public messageHandlerThread(DatagramPacket inPacket, String owner)
{

this.setName(owner) ;
this.threadName = owner;
//get the request message
message = new String(inPacket.getData());

//get the address and port of the requestor
senderAddress. = inPacket.getAddress();
senderPort = inPacket.getPort();

}//end constructor

// Function: messageHandlerThread(DatagramPacket inPacket, int threadNumber)
// Purpose: Thread constructor, takes the datagram packet and it's assigned
// thread number
//•it***

public messageHandlerThread(vectorInt mother, DatagramPacket inPacket,
String owner)

{
this.setName(owner);
this.threadName = owner;
this.mother = mother;
this.haveMom = true;

//get the request message
message = new String(inPacket.getData ());

//get the address and port of the requestor
senderAddress = inPacket.getAddress();
senderPort = inPacket.getPort();

}//end constructor

// Function: void run()
// Purpose: Starts the thread, called by start();
//***

public void run()
{

//parse the message recieved
StringTokenizer tok = new StringTokenizer(message);
//who needs to process this message
String logicModule = tok.nextToken();

//reformat the rest of the message
String restOfMessage = restOfMessage(tok);

133

//evaluate first token to determine which logicModule to call and pass
// that module the rest of the message
if (logicModule.equals("net")){

if(haveMom){
networkLogic nl = new networkLogic(mother, threadName,

restOfMessage, senderAddress, senderPort);
nl.executeRequest ();

}else {
networkLogic nl = new networkLogic(threadName, restOfMessage,

senderAddress, senderPort);
nl.executeRequest();

}
}
else if(logicModule.equals("db")){

if (haveMom){
dbLogic dl = new dbLogic(mother, threadName, restOfMessage,

senderAddress, senderPort);
dl.executeRequest();

}else{
dbLogic dl = new dbLogic(threadName, restOfMessage, senderAddress,

senderPort);
dl.executeRequest();

}
}
else if(logicModule.equals("response")){

if (haveMom){
responseLogic rl = new responseLogic(mother, threadName,

restOfMessage, senderAddress, senderPort);
rl.executeRequest();

}else{
responseLogic rl = new responseLogic(threadName, restOfMessage,

senderAddress, senderPort);
rl.executeRequest();

}

}
else{

//dont process this request
System.out.println("Message Handler cannot process this request ...");
if (haveMom){

mother.updateVector("Message Handler cannot process this request");
} .

}//end if

}//end run

private String restOfMessage(StringTokenizer tok)
{

StringBuffer buff = new StringBuffer();

//get the rest of the request
while(tok.hasMoreTokens()){

buff = buff.append(tok.nextToken()); //appends the sql statement
buff = buff.append(" ");

}

String result = new String(buff);

return result;
}

}//end class

134

// End File: messageHandlerThread.Java

//************************************* + ******** + + ****** + * + ******* + + ■*:

// File: dbLogic.java
// Purpose: This class contains the business logic to handle the
// database requests based on the given priviliges of the
// database server.
//**+**********************

import java.net.*;
import java.sql.*;
import java.util.*;

class dbLogic
{

String threadName = null;
String message = null;
InetAddress senderAddress = null;
int senderPort = 0;

static int mcID = 1; //for join mcgroup command

networkUtil network = new networkUtil();
dbUtil dbServer= new dbUtilO;

boolean debug = true;
boolean ack = false;

vectorlnt mother = null;
boolean haveMom = false;

public dbLogic(String threadName, String message, InetAddress sa, int sp)
{

this.threadName = threadName;
this.senderAddress = sa;
this.senderPort = sp;
this.message = message;

}//end constructor

public dbLogic(vectorlnt mother, String threadName, String message,
InetAddress sa, int sp)

{
this.threadName = threadName;
this.senderAddress = sa;
this.senderPort = sp;
this.message = message;
this.mother = mother;
this.haveMom = true;

}//end constructor

public void executeRequest()
{

dbRequest (message);

}

135

// Function: void dbRequest(String message)
// Purpose: This is where all the messag logic will reside
// - service database requests based upon listenerThread name
//****************************•*************************

private void dbRequest(String message)
{

System.out.println("db request " + message);
String mess = message.trim();
if (haveMom)

mother.updateVector(mess);
//use a string tokenizer to parse the request, the delimiter is
//blankspace
StringTokenizer tok = new StringTokenizer(mess);

//get the data source
String dsn = tok.nextToken();

//repackage the rest of the message
String sql = restOfMessage(tok);
String whoAml = threadName;

// FOR MULTICAST COMMS
if(dsn.equals("all")) {

//bn_dbRequest("l_BnParts", sql);
if (whoAml.equals("a_CoParts"))

co_dbRequest("a_CoParts", sql);
else if (whoAml.equals("b_CoParts")){

try{
Thread.currentThread().sleep(2000);

}catch(InterruptedException e){}
co_dbRequest("b_CoParts", sql);

}
else if (whoAml.equals("c_CoParts")){

dbLogic_C cl = new dbLogic_C(mother, "c_CoParts", sql,
senderAddress, senderPort);

cl.executeRequest();
}
else if (whoAml.equals("l_BnParts")) {

bn_dbRequest(sql);
}

}//end if

//FOR POINT TO POINT COMMUNICATION
//can handle select and update
else if (dsn.equals("a_CoParts") && whoAml.equals("a_CoParts")) {

co_dbRequest(dsn, sql);
}
else if (dsn.equals("b_CoParts") && whoAml.equals("b_CoParts")) {

//test to demonstrate why synch is needed
try(

Thread.currentThread().sleep(2000);
}catch(Exception e){}

co_dbRequest(dsn, sql);
}
else if (dsn.equals("c_CoParts") && whoAml.equals("c_CoParts")) {

dbLogic_C cl = new dbLogic_C(mother, "c_CoParts", sql,
senderAddress, senderPort) ;

cl.executeRequest();

136

}

else if (dsn.equals("l_BnParts") && whoAml.equals("l_BnParts")) {
System.out.println("making bn_dbCall ");

bn_dbRequest(sql);
}

else{
System.out.println("Database logic Module cannot process " + message);

}

}//end function

// Function: co_dbRequest(String dsn, String sql))
// Purpose: Companys are authorizes to perfrom database queries and to
// perform updates.
// Logic: establishes a connection to the database to process the request

public void co_dbRequest(String dsn, String sql)
{

//use a string tokenizer to parse the request, the delimiter is
//blankspace
StringTokenizer tok = new StringTokenizer(sql);

//evaluate the first token <CREATE, INSERT, SELECT, DELETE>
String command = tok.nextToken();

if(command.equals("select")) {

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String userlD = null;
String password = null;

//set the connection, jdbc:odbc:a_CoParts,
dbServer.setConnection(driver, "jdbc:odbc:" + dsn, userlD, password);

//process the query
String resultSet = dbServer.executeSQLGetString(sql) ;

//close the connection
dbServer.closeConnectionO ;

StringBuffer buff = new StringBuffer();
buff.append("response db ");
buff.append (threadName);
buff.append(" ");
buff.append(resultSet) ;

String messagel = new String(buff);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);
print.printResultSet(threadName,resultSet);

if (haveMom){
StringBuffer buff_l = new StringBuffer();
buff_l.append("send resultSet to ") ;
buff_l.append(senderAddress);
String r = new String(buff_l);
String q = r.trimO;

137

sql),

mother.updateVector(q) ;
}

}//end if
else if(command.equals("update")){

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String userlD = null;
String password = null;

//set the connection, jdbc:odbc:a_CoParts,
dbServer.setConnection(driver, "jdbc:odbc:" + dsn, userlD, password);

//process request returning a vector
Vector resultVector = new Vector();
resultVector = dbServer.executeSQL(sql);

//close the connection
dbServer.closeConnection();

StringBuffer buff = new StringBuffer();
buff.append("response db");
buff.append(" ");
buff.append(" update was successful ");

String messagel = new String(buff);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);

if (haveMom){
String r = "update complete";
String q = r.trimO;
mother.updateVector(q);

}
dbServer.printConsole(resultVector);

}
else
{

System.out.println(threadName + " forwarding to Battalion " +

if (haveMom){
StringBuffer buff = new StringBuffer();
buff.append("forwarding request to Battalion ");
buff.append(sql);
String r = new String(buff);
String q = r.trimO;
mother.updateVector(q);

}

//get bnPort number
int bnPort = portNumbers.getListenPort("l_BnParts");
int myPort = portNumbers.getSendPort(threadName);
InetAddress bnHost = portNumbers.getHost();

StringBuffer buff2 = new StringBuffer ();
buff2.append("db l_BnParts ");
buff2.append(threadName);
buff2.append(" ");
buff2.append(sql);

String message2 = new String(buff2);

138

String sql2 = message2.trim();
//send it to battalion to process
network.sendMessage(bnHost, bnPort, myPort, sql2);

//tell client cannot process request
StringBuffer buff = new StringBuffer ();
buff.append("response net ");
buff.append(threadName);
buff.append(" Request was Forwarded to Battalion");

String messagel = new String(buff);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);

if(haveMom)
mother.updateVector(message2);

}//end else

}//end function

//company objects can only perform SELECT AND UPDATE
public void bn_dbRequest(String inMessage)
{

//peel the next token off to get dsn
StringTokenizer tok = new StringTokenizer(inMessage);

//evaluate the first token "select part from parts"
String dsn = tok.nextToken();
String sql = restOfMessage(tok);

//who sent the request
//String dsn = portNumbers.getName(senderPort);
String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String userlD = null;

if(dsn.equals("c_CoParts")){
//assign admin userid for c_CoParts db
userlD = "sa";

}
String password = null;

//set the connection, jdbc:odbc:a_CoParts,
dbServer.setConnection(driver, "jdbc:odbc:" + dsn, userlD, password);

//process the query
String resultSet = dbServer.executeSQLGetString(sql);
//close the connection
dbServer.closeConnection();

StringBuffer buff = new StringBuffer();
buff.append("response db "); //select //message ! null
buff.append(threadName);
buff .append (". ") ;
buff.append(resultSet);

String messagel = new String(buff);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);

}//end function

139

private String restOfMessage(StringTokenizer tok)
{

StringBuffer buff = new StringBuffer();

//get the rest of the request
while(tok.hasMoreTokens ()){

buff = buff.append(tok.nextToken()); //appends the sql statement
buff = buff.append(" ");

}

String result = new String(buff);

return result;
}

}//end class

// End File: dbLogic.java

// File: dbLogic_C.Java
// Purpose: This class contains the business logic to handle the
// database requests specific to c_CoParts database server.
//**+****************

import java.util.*;
import java.sql.*;
import java.net.*;

class dbLogic_C
{

String threadName = null;
String message = null;
InetAddress senderAddress = null;
int senderPort = 0;

static int mcID = 1; //for join mcgroup command

networkUtil network = new networkUtil();
dbUtil dbServer= new dbUtilO;
vectorlnt mother = null;
boolean haveMom = false;

boolean debug = true;

public dbLogic_C(vectorlnt mother, String threadName, String message,
InetAddress sa, int sp)

{
this.threadName = threadName;
this.message = message;
this.senderAddress = sa;
this.senderPort = sp;
this.mother = mother;
this.haveMom = true;

}

public void executeRequest()
{

140

dbRequest(threadName, message);
}

//compnay objects can only perform SELECT AND UPDATE
private void dbRequest(String dsn, String sql)

{
//use a string tokenizer to parse the request, the delimiter is
//blankspace
StringTokenizer tok = new StringTokenizer(sql);

//evaluate the first token "select part from parts"
String command = tok.nextToken();

if(command.equals("select")) {

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String userlD = "sa";
String password = null;

//set the connection, jdbc:odbc:a_CoParts,
dbServer.setConnection(driver, "jdbc:odbc:" + dsn, userlD, password);

//process the query
String resultSet = dbServer.executeSQLGetString(sql);
//close the connection
dbServer.closeConnection();

StringBuffer buff = new StringBuffer();
buff.append("response db "); //select //message ! null
buff.append(threadName);
buff.append(" ");
buff.append(resultSet);

String messagel = new String(buff-);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);
print.printResultSet(threadName,resultSet);

}//end if
else if(command.equals ("update")){

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String userlD = null;
String password = null;

//set the connection, jdbc:odbc:a_CoParts,
dbServer.setConnection(driver, "jdbc:odbc:" + dsn, userlD, password);

//process request returning a vector
Vector resultVector = new Vector();
resultVector = dbServer.executeSQL(sql);
//close the connection
dbServer.closeConnection();

StringBuffer buff = new StringBuffer();
buff.append("response db "); //select //message ! null
buff.append(threadName);
buff.append(" ");
buff.append(" update was successful ");

String messagel = new String(buff);

141

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);

//to server screen
if (debug) System.out.println("SQL = " + sql + " processed by " +

threadName);
//print it to the server screen
dbServer.printConsole(resultVector);

}
else
{

System.out.println(threadName + "cannot process forwarding it to
Battalion" + sql);

//get bnPort number
int bnPort = portNumbers.getListenPort("l_BnParts");

int myPort = portNumbers.getSendPort(threadName);
InetAddress bnHost = portNumbers.getHost();

StringBuffer buff2 = new StringBuffer();
buff2.append("db l_BnParts ");
buff2.append(threadName);
buff2.append(" ");
buff2.append(sql);

String message2 = new String(buff2);
//send it to battalion to process
network.sendMessage(bnHost, bnPort, myPort, message2);

//tell client cannot process request
StringBuffer buff = new StringBuffer();
buff.append("response net ");
buff.append(threadName);
buff.append(" Request was Forwarded to Battalion");

String messagel = new String(buff);

//send the string to the user
network.sendMessage(senderAddress, senderPort, messagel);

}//end else

)//end function

}//end class
//***************************•***************************************

// End File: dbLogic_C.Java
//A**

// File: responseLogic.Java
// Purpose: This class contains the logic for handling the responses
// from objcets. Responses might be either query resultset
// or an acknowledgement or a network response.
//*****************************+*************************************

import java.net.*;
import java.sql.*;
import java.util.*;

142

class responseLogic
{

String threadName = null;
String message = null;
InetAddress senderAddress = null;
int senderPort = 0;

static int mcID = 1; //for join mcgroup command

networkUtil network = new networkUtil();
dbUtil dbServer= new dbUtilO;

vectorlnt mother = null;
boolean debug = true;

public responseLogic(String threadName, String message, InetAddress sa, int
sp)

{
this.threadName = threadName;

• this.senderAddress = sa;
this.senderPort = sp;
this.message = message;

}//end constructor

public responseLogic(vectorlnt mother, String threadName, String message,
InetAddress sa, int sp)

{
this.threadName = threadName;
this.senderAddress = sa;
this.senderPort = sp;
this.message = message;
this.mother = mother;

}//end constructor

public void executeRequest()
{

responseRequest(message);

}

public void responseRequest(String message)
{

//use a string tokenizer to parse the request, the delimiter is
blankspace

StringTokenizer tok = new StringTokenizer(message);

//type of resonse <db, ack,
String command = tok.nextToken();
String from = tok.nextToken();
String restOfMsg = restOfMessage(tok);
if (command.equals("db")){

//a synchronized print function
print.printResultSet(from, restOfMsg);

//send response to mother
mother.updateVector(from);
mother.updateResultList(restOfMsg);

143

}//end if
else if (command.equals("ack")){

System.out.println("\nack" + "from " + senderAddress +" | " +
senderPort);

}
else if (command.equals("net")){

print.printMessage(from, restOfMsg);
mother.updateVector(from) ;
mother.updateVector(restOfMsg);

}//end if
}//end function

private String restOfMessage(StringTokenizer tok)

{
StringBuffer buff = new StringBuffer();

//get the rest of the request
while(tok.hasMoreTokens()){

buff = buff.append(tok.nextToken()); //appends the sql statement
buff = buff.append(" ");

}

String result = new String(buff);
String res = result.trim();

return res;
}

}

// End File: responseLogic.Java

// File: networkLogic.Java
// Purpose: This class contains the logic for handling the network
// protocol messages from objects. Network request messages
// might be either a join command (to a multicast group),
// or leave command (from a multicast group), or an ack,
// or a query about the aliveness of the object.
//************+**

import java.net.*;
import java.util.*;

class networkLogic
{

String threadName = null;
String message = null;
InetAddress senderAddress = null;
int senderPort = 0;

static int mcID = 1; //for join mcgroup command

networkUtil network = new networkUtil();

vectorlnt mother = null;
boolean haveMom = false;

144

// Function: networkLogic(String threadName, String message, InetAddress sa,
// int sp)
// Purpose: handlet net protocol

public networkLogic(String threadName, String message, InetAddress sa, int
sp)

{
this.threadName = threadName;
this.senderAddress = sa;
this.senderPort = sp;
this.message = message;

}//end constructor

// Function: networkLogic(String threadName, String message, InetAddress sa,
//int sp)
// Purpose: handlet net protocol

public networkLogic(vectorlnt mother, String threadName, String message,
InetAddress sa, int sp)

{
this.threadName = threadName;
this.senderAddress = sa;
this.senderPort = sp;
this.message = message;
this.mother = mother;
this.haveMom = true;

}//end constructor

public boolean executeRequest()
{

networkRequest(message, threadName);
return true;

}

// Function: networkRequest(String message)
// Purpose:

private void networkRequest(String message, String threadName)
{

StringTokenizer tok = new StringTokenizer(message);
String command = tok.nextToken(); //get the first token

if (command.equals("join")){

//get the next two tokens
String mcIP = tok.nextToken();
String a = tok.nextToken ();
int mcPort = Integer.parselnt(a);

//display result in gui
if(haveMom){

mother.updateVector("Join " + mcIP + " | " + mcPort);
//set the mcListen flag
mother.setMCListen(true);

}

StringBuffer buff = new StringBuffer(threadName);
buff.append(" mc");
buff.append(mcID);

145

mcID++;
String mcThreadName = new String(buff) ;

//create a new mcLister thread
if(haveMom){

mcListenerThread mclistener = new mcListenerThread(mother, mcIP,
mcPort, mcThreadName);

mclistener.start();
}else{

mcListenerThread mclistener = new mcListenerThread(mcIP, mcPort,
mcThreadName);

mclistener.start(};
}

//send a an ack back
int myPort = portNumbers.getSendPort(threadName) ;
//format message
StringBuffer buffi = new StringBuffer() ;
buffi.append("net ack ");
buffi.append(threadName);
buffi.append(" ");

String response = new String(buffi);
System.out.println("Sending response: " + response);
//use private line so receiver can get your addrss and port
network.sendMessage(senderAddress, senderPort, myPort, response);

}
else if (command.equals("leave")){

String ip = tok.nextToken();

//display result in gui
if(haveMom){

mother.updateVector("leave " + ip) ;
//set the mcListen flag
mother.setMCListen(false);

}
}
//incoming message
else if (command.equals("ack")){

String rom = restOfMessage(tok);

//print the ack to the screen
System.out.println("ack from " + rom);
mother.updateVector("ack from " + rom);

}
//outgoing message
else if (command.equals("respond")){

int myPort = portNumbers.getSendPort(threadName);
//format message
StringBuffer buffi = new StringBuffer();
Buffi.append("net message ");
buffi.append(threadName);
buffi.append(" is alive ");

String response = new String(buffi);
//use private line so receiver can get your addrss and port
network.sendMessage(senderAddress, senderPort, myPort, response);

if(haveMom)

146

mother.updateVector(response);

}
//outgoing
else if (command.equals("message")){

String contents = restOfMessage(tok);
System.out.println(contents);
if (haveMom) mother.updateVector(contents) ;

}
else{

System.out.println("Network Module cannot process request " +
message);

}
}//end processPackage(message)

private String restOfMessage(StringTokenizer tok)
{

StringBuffer buff = new StringBuffer();

//get the rest of the request
while (tok.hasMoreTokens()){

buff = buff.append(tok.nextTokenO); //appends the sql statement
buff = buff.append(" ");

}

String result = new String(buff);
String res = result.trim();

return res;
}

)//end networkLogic

// End File: networkLogic.Java

// File: dbUtil.java
// Purpose: A utility class with functions to establish a connection,
// submit a SQL Statement, execute a query, get database
// meta data and so on.
//***

import Java.sql.*;
import java.util.*; //for vector and hash

public class dbUtil {

private Connection con = null;
private Statement stmt = null;

private static final boolean debug = false; //for debugging

//**•***********************+*****************

// Function: bool setConnection(String driver, String url,
// String name. String password)
// Purpose : constuctor which allows user to specify connection
//**************************■******************+

public boolean setConnection(String driver, String url, String name, String
password)

{

147

try{
Class.forName(driver);
con = DriverManager.getConnection(url, name, password);

}catch(SQLException e){
System.out.println("Failed to connect to database: " + url + " " +

e.getMessage());
return false;

}catch(ClassNotFoundException e) {
System.out.println("Unable to find driver class.");
return false;

}
System.out.println("Connected to Database :" + url);
return true;

}//end setConnection

//**************** *■* ***************************

// Function: getConnection(String driver, String url,
// String name, String password)
// Purpose : returns a connection object to client

public Connection getConnection(String driver, String url, String name,
String password)

{
try{

Class.forName(driver) ;
con = DriverManager.getConnection(url, name, password);

}catch(SQLException e){
System.out.println("Failed to connect to database: " + url + " " +

e.getMessage ()) ;
return null;

}catch(ClassNotFoundException e){
System.out.println("Unable to find driver class.");
return null;

}
System.out.println("Connected to Database :" + url) ;
return con;

}//end setConnection

// Function: closeConnection(
// Purpose : closes the Connection to the datasource
//*********************************■*■***********

public void closeConnection()
(
try{

con.close();
}
catch (Exception e) {

e.printStackTrace();
}

}//end closeConnection

// Function: executeSQL(String sql)
// Purpose : dynamically get table data, based upon a sql statment
// returns a vector with resultSet
// Ref: DataBase Programming with JDBC and JAVA
//**+**

public Vector executeSQL(String sql)

{

148

Vector resultVector = new Vector(); //to store resultSet by hashTables

int cols;
try{

stmt = con.createStatement();

if(strut.execute(sql)){ //returns true if sql produces a resultSet

//get the SQL results
ResultSet result = stmt.getResultSet();

//get the resultSet metadata
ResultSetMetaData meta = result.getMetaData();

//how many columns
cols = meta.getColumnCount();
if (debug) System.out.println("Number of columns: " + cols);

int xx =0;
//increment through the rows (tuples) of the result set
while(result.next()){

//each tuple gets a hashtable to store information
Hashtable rowResults = new Hashtable(cols);

//increment through the tuple <name, ssn, dept>
for (int ix = 0; ix < cols; ix++){

//get the object <string, int ect.> stored in column
//index l,2,...n and store in an objec
int index = ix + 1;
Object obj = result.getObject(index);

hashtable
//use the column lable as the hash key and put object

if(obj == null){
rowResults.put(meta.getColumnLabel(index), "");

} else {
rowResults.put(meta.getColumnLabel(index), obj);

}//end if
}//end for

//add the hash object to the vector
resultVector.addElement(rowResults);

}//end while

//System.out.println(resultVector.capacity());

return resultVector;
}

return null; //SQL statement did not produce a ResultSet
}
catch(SQLException e){

System.err.println("Failed to executeSQLC + sql + ") function");
e.printStackTrace();
return null;

}

}//end executeSQL

149

// Function : printConsole(Vector v)
// Purpose : Prints the data taken from hash table which
// is received by vector v

public void printConsole(Vector v)

{
if (v == null){

//do nothing

}
else{

Vector resultVector = v;
int vectSize = resultVector.size();

for(int ix = 0; ix < vectSize; ix++) {
//take the hashtables from the vector one by one
Hashtable myHashTable = (Hashtable)resultVector.elementAt(ix);
//enumerate the objects in hashtable
Enumeration hashEnum = (Enumeration)myHashTable.elements() ;

while(hashEnum.hasMoreElements()){
Object myObj = (Object)hashEnum.nextElement();
System.out.println(myObj);

}//end while

}//end for
}//end else

}//end printHashedVector()

//***■*

// Function: executeSQL(String sql)
// Purpose : dynamically get table data, based upon a sql statment
// returns a vector with resultSet
// Ref: DataBase Programming with JDBC and JAVA

public String executeSQLGetString(String sql)

{
//System.out.println (" executeSQLGetString Request # " + sqlRequest++);
String resultString = null;

try{
stmt = con.createStatement();

if(stmt.execute(sql)){ //returns true if sql produces a resultSet

ResultSet result_set = stmt.getResultSet() ;
//put resultSet in string format
resultString = processResults(result_set);

}//end if

return resultString;
}
catch(SQLException e){

System.err.println("Failed to executeSQLC + sql + ") function");
e.printStackTrace();
return null;

}

}//end executeSQLGetString(String sql)

//*****************•*■**************************

// Function: String processResults(ResultSet results)
// Purpose : processes resultSet into a string
// : ',' is being used as a deliminator for String Tokenizer

150

public String processResults(ResultSet results) throws SQLException
{

try {
ResultSetMetaData meta = results.getMetaData() ;
StringBuffer bar = new StringBuffer();
String buffer = "";
int cols = meta.getColumnCount();
int row_count = 0;
int i, width = 0;

// Prepare headers for each of the columns
// The display should look like:
//

// I Column One | Column Two |
//

// I Row 1 Value | Row 1 Value I
//

// create the bar that is as long as the total of all columns
for(i=l; i<=cols; i++) {

width += meta.getColumnDisplaySize(i) ;
}//end for
width += 1 + cols;
for(i=0; Kwidth; i++) {

bar.append('-');
}//end for
bar.append('\n');
bar.append(","); //my deliminator
buffer += bar + "|";
// After the first bar goes the column labels
for(i=l; i<=cols; i++) {

StringBuffer filler = new StringBuffer();
String label = meta.getColumnLabel(i);
int size = meta.getColumnDisplaySize(i) ;
int x;

// If the label is long than the column is wide,
// then we truncate the column label
if(label.length() > size) {

label = label.substring(0, size);
}//end if
// If the label is shorter than the column, pad it with spaces
if(label.length() < size) {

int j;
x= (size-label.length())12;
for(j=0; j<x; j++) {

filler.append(' ');
}//end for
label = filler + label + filler;
if(label.length() > size) (

label = label.substring(0, size);
}
else {

while(label.length() < size) {
label += " ";

}//end while
}//end if

}//end if
// Add the column header to the buffer
buffer = buffer + label + "|";

}//end for

151

// Add the lower bar
buffer = buffer + "\n" + "," + bar;
// Format each row in the result set and add it on
while(results.next()) {

row_count++;
buffer += "I";
// Format each column of the row
for(i=l; i<=cols; i++) {

StringBuffer filler = new StringBuf fer.() ;
Object value = results.getObject(i);
int size = meta.getColumnDisplaySize(i);
String str = value.toString();
if(str.lengthO > size) {

str = str.substring(0, size);
}//end if
if(str.lengthO < size) {

int j, x;
x = (size-str.length())/2;
for(j=0; j<x; j++) {

filler.append(' ');
}//end for
str = filler + str + filler;
if(str.lengthO > size) {

str = str.substring(0, size);
}
else {

while (str.lengthO < size) {
str += " ";

}//end while
}

}
buffer = buffer + str + "I";

}//end for
buffer = buffer + "\n" + ",";

}//end while
// Stick a row count up at the top
if(row_count == 0) {

buffer = "No rows selected.\n" + "," + buffer;

}
else if(row_count == 1) {

buffer = "1 row selected.\n" + "," + buffer;
}
else {

buffer = row_count + " rows selected.\n" + "," + buffer;
}
return buffer;

}catch(SQLException e) {
throw e;

}finally {
try { results.close(); }
catch (SQLException e) { }

}
}//end processResults(ResultSet results)

}//end class
//***•**********

// End File: dbUtil.java
//***

152

// File: networkUtil.Java
// Purpose: Utility package to send requests, listen for requests,
// send multicast requests and so on.
//***+***

import java.util.*; //for Vector
import java.io.*; //for sleep function
import java.net.*;

public class networkUtil
{

// Function: mcSendListenForResponses(vectorlnt mother, String mcAddress,
// int mcPort, int expReplies, int

timer, String message)
// Purpose: vectorlnt = gui interface, send message to mulicast group,
// The function will block waiting for N repsonses or until it Times Out

public void mcSendListenForResponses(vectorlnt mother, String mcAddress, int
mcPort, int expReplies, int timer, String message)

{
int numReplies = 0; //for acks
int mcSL_MH = 1;

//for message
DatagramSocket socket = null;
int assignedPort = 0;

InetAddress mcDA = null;

byte[] buff = new byte[1024] ;
buff = message.getBytes() ;

try{
//os dynamically assigned port
socket = new DatagramSocket();
assignedPort = socket.getLocalPort() ;
socket.setSoTimeout(2000); //set so socket times out every 2 seconds

//get group address
mcDA = InetAddress.getByName(mcAddress);

//create packet
DatagramPacket packet = new DatagramPacket(buff, buff.length, mcDA,

mcPort);

//send the packet
socket.send(packet);

}catch(Exception e){
System.out.printIn(e) ;

}

II*** listen for n responses or timeOut ***
long startTime = System.currentTimeMillis();
long elapsedTime = 0;
long timeOut = timer;

System.out.println(message +" startTime " + startTime);

while((elapsedTime < timeOut) && (numReplies < expReplies)){

//creat a inPacket for incoming messages

153

byte [] buff_l = new byte[1024];
DatagramPacket inPacket = new DatagramPacket(buff_l, buff_l.length);
try{

//blocks for 2 seconds then throwInteruptlOException
elapsedTime = System.currentTimeMillis() - startTime;
socket.receive(inPacket) ; //throws 10 Exception

//create a messageHanlder object using the 2nd constructor that
//does not increment off the sendPort synchListen
messageHandlerThread handler = new messageHandlerThread(mother,

inPacket, "mcSL_MH # " + mcSL_MH);
handler.start ();
mcSL_MH++;
numReplies++;

}catch (SocketException e){
System.err.println(e);

}catch (IOException e) {
elapsedTime = System.currentTimeMillis() - startTime;
System.out.println("timeOutCheck, elapsedTime I " + elapsedTime);

}
}//end while

if (elapsedTime > timeOut)
System.out.println(message +" TimedOut");
mother.updateVector(message + " TimedOut");

socket.close();
}//end function

// Function: sendListenForResponses(vectorlnt mother, Vector recipVector,
// String message)
// Purpose: user can send a message to N recipiants
// The function will block waiting for N repsonses or until it Times Out
// Object recieves an interface object to mother object
//***********+**********************************■********

public void sendListenForResponses(vectorlnt mother, String recipiant,
String message, long timeOut)

{

//for acks
int numberAcks = 0;
int expectedAcks = 1;
//for times
long startTime = 0;
long elapsedTime = 0;

//for this message
DatagramSocket socket = null;
int myPort = 0;

//recipiants socket info
InetAddress addr = null;
int port = 0;

//*** get a socket ***
try{

//os dynamically assigned port
socket = new DatagramSocket();
myPort = socket.getLocalPort();

154

port)

//set socket timeout parameter
socket.setSoTimeout(2000);

}catch(SocketException e){
System.out.println(e);

}

//get recipiants address and port
addr = portNumbers.getIP(recipiant);
port = portNumbers.getListenPort(recipiant);

II*** prep the message ***
byte[] buff3 = new byte[1024],•
buff3 = message.getBytes();
DatagramPacket packet = new DatagramPacket(buff3, buff3.length, addr,

//send it
try{

socket.send(packet);
}catch(IOException e){
System.err.println(e);

}

II*** listen for n responses or timeOut ***
startTime = System.currentTimeMillis();
System.out.println(message +" startTime " + startTime);

while((elapsedTime < timeOut) && (numberAcks < expectedAcks)){

//creat a inPacket for incoming messages
byte [] buff = new byte[1024];
DatagramPacket inPacket = new DatagramPacket(buff, buff.length);
try{

//blocks for 2 seconds then throwInteruptlOException
elapsedTime = System.currentTimeMillis() - startTime;
socket.receive(inPacket); //throws 10 Exception

//create a messageHanlder object using the 2nd constructor that
does not increment off the sendPort synchListen

messageHandlerThread handler = new messageHandlerThread (mother,
inPacket, recipiant + " Response");

handler.start();
numberAcks++;

Jcatch (SocketException e){
System.err.println(e);

}catch (IOException e) {
elapsedTime = System.currentTimeMillis () - startTime;
System.out.println("check for timeOut, elapsedTime | " +

elapsedTime);
}

}//end while

if (elapsedTime > timeOut){
System.out.println(message +" TimedOut");
mother.updateVector(message + " TimedOut");

}
socket.close() ;

}//end function

// Function: sendListenForResponses(Vector recipVector, String message)

155

// Purpose: user can send a message to N recipiants
// The function will block waiting for N repsonses or until it Times Out
// NON GUI VERSION
//************************************•******+**********

public void sendListenForResponses(String recipiant, String message, long
timeOut)

{
//for acks
int numberAcks = 0;
int expectedAcks = 1;
//for times
long startTime = 0;
long elapsedTime = 0;

//for this message
DatagramSocket socket = null;
int myPort = 0;

//recipiants socket info
InetAddress addr = null;
int port = 0;

//*** get a socket ***
try{

//os dynamically assigned port
socket = new DatagramSocket();
myPort = socket.getLocalPort() ;
//set socket timeout parameter
socket.setSoTimeout(2000) ;

}catch(SocketException e){
System.out.println(e) ;

}

//get recipiants address and port
addr = portNumbers.getIP(recipiant) ;
port = portNumbers.getListenPort(recipiant);

//*** prep the message ***
byte[] buff3 = new byte[1024];
buff3 = message.getBytes();
DatagramPacket packet = new DatagramPacket(buff3, buff3.length, addr,

port);

//send it
try{

socket.send(packet);
}catch(IOException e){
System.err.println(e);

}

II*** listen for n responses or timeOut ***
startTime = System.currentTimeMillis() ;
System.out.println(message +" startTime " + startTime);

while ((elapsedTime < timeOut) && (numberAcks < expectedAcks)){

//creat a inPacket for incoming messages
byte [] buff = new byte[1024];
DatagramPacket inPacket = new DatagramPacket(buff, buff.length);
try{

//blocks for 2 seconds then throwInteruptlOException
elapsedTime = System.currentTimeMillis() - startTime;
socket.receive(inPacket); //throws 10 Exception

156

//create a messageHanlder object using the 2nd constructor that
does not increment off the sendPort synchListen

messageHandlerThread handler = new messageHandlerThread(inPacket,
recipiant + " Response");

handler.start();
numberAcks++;

}catch (SocketException e){
System.err.println(e);

}catch (IOException e) {
elapsedTime = System.currentTimeMillis() - startTime;
System.out.println("check for timeOut, elapsedTime | " +

elapsedTime);
}

}//end while

if (elapsedTime > timeOut)
System.out.println(message +" TimedOut");

socket.close ();
}//end function

//-fr***

// Function: sendMessage(String ip, int port, String message)
// Purpose: sends a mutlicast message to specified group
//********************** ********************************

public void sendMulticastMessage(String ip, int port, int myPort, String
message)

{
try{

DatagramSocket socket = new DatagramSocket(myPort); //port 5000

byte[] buf = new byte[512];
buf = message.getBytes();

// send it
//the group identifier is 230.0.0.1, monitoring port 4446
InetAddress group = InetAddress.getByName(ip) ;
DatagramPacket packet = new DatagramPacket(buf, buf.length, group,

port);
socket.send(packet);

//close the socket
socket.close();

} catch (IOException e) {
e.printStackTrace() ;

}
}//sendMulticastMessage(String ip, int port, String message)

//**

// Function: void sendMessage(InetAddress address, int port, String answer)
// Purpose: creates a DatagramSocket, sends a message to the address and
// port supplied.
//**

public void sendMessage(InetAddress da, int dp. String message)
{

try{
DatagramSocket socket = new DatagramSocket() ;

157

byte[] buff = new byte[1024];
buff = message.getBytes ();

//prep the packet
DatagramPacket packet = new DatagramPacket(buff, buff.length, da, dp);

//send the packet
socket.send(packet);

socket.close ();

}catch(SocketException e){
System.out.print(e);

}catch(IOException e){
System.out.print(e);

}
}

public void sendMessage(String sDA, int dp. String message)

{
try{

InetAddress da = InetAddress.getByName(sDA);
DatagramSocket socket = new DatagramSocket();

byte[] buff = new byte[1024],•
buff = message.getBytes ();

//prep the packet
DatagramPacket packet = new DatagramPacket(buff, buff.length, da, dp);

//send the packet
socket.send(packet);

socket.close();

}catch(SocketException e){
System.out.print(e);

}catch(IOException e){
System.out.print(e);

}
}

//*********************•********************************

// Function: void sendMessage(InetAddress address, int port, String message)
// Purpose: creates a DatagramSocket and send a message
// Parameters: da = destination address, dPort = destination port
// sPort = port to use to send

public void sendMessage(InetAddress da, int dPort, int sPort, String
message)

{
try{

//create a socket to use
DatagramSocket responseSocket = new DatagramSocket(sPort);

byte[] buff = new byte[256];
buff = message.getBytes();

//prep the packet

158

DatagramPacket packet = new DatagramPacket(buff, buff.length,da,
dPort);

//send the packet
responseSocket.send(packet);
responseSocket.close(); //close the socket

}catch(SocketException e){
System.out.print(e);

}catch(IOException e){
System.out.print(e);

}
}

}//end class

// End File: networkUtil.Java

// File: portNumbers.Java
// Purpose: A class that manages the listening and sending port
// number allocation and utility function related to that.

import java.net.*;

public class portNumbers{

static int BnPortS = 5010;
static int BnPortL = 5011;
static int a_CoPortS = 5013;
static int a_CoPortL = 5014;
static int b_CoPortS = 5015;
static int b_CoPortL = 5016;
static int c_CoPortS = 5017;
static int c_CoPortL = 5018;

static String a_CoIP = "131.120.1.91"
static String b_CoIP = "131.120.1.91"
static String c_CoIP = "131.120.1.57"
static String BnIP = "131.120.1.91";

static String host = "131.120.1.91";

public static InetAddress getHostO
{

try{
return InetAddress.getByName(host);

} catch(Exception e){
return null;

}
}

public static InetAddress getIP(String unit)
{

InetAddress result = null;
try{

if (unit.equals("a_CoParts"))
result = InetAddress.getByName(a_CoIP);

else if (unit.equals("b_CoParts"))
result = InetAddress.getByName(b_CoIP);

else if (unit.equals("c_CoParts"))
result = InetAddress.getByName(c_CoIP);

159

else if (unit.equals("l_BnParts"))
result = InetAddress.getByName(BnIP);

else
result = null;

return result;
}catch(Exception e){

System.err.println("Could not find ip for " + unit);
return null;

}
}//end

public static String getName(int senderPort)
{

if (senderPort == (a_CoPortL))
return "a_CoParts";

else if (senderPort == (b_CoPortL))
return "b_CoParts";

else if (senderPort == (c_CoPortL))
return "c_CoParts";

else return null;

}

public static int getListenPort(String unit)
{

if (unit.equals("a_CoParts"))
return a_CoPortL;

else if (unit.equals("b_CoParts"))
return b_CoPortL;

else if (unit.equals("c_CoParts"))
return c_CoPortL;

else if (unit.equals("l_BnParts"))
return BnPortL;

else return -1;
}//end

public static int getSendPort(String unit)
{

if (unit.equals("a_CoParts"))
return a_CoPortS;

else if (unit.equals("b_CoParts"))
return b_CoPortS;

else if (unit.equals("c_CoParts"))
return c_CoPortS;

else if (unit.equals("l_BnParts"))
return BnPortS;

else return -1;
}//end

}

// End File: portNumbers.Java

160

APPENDIX C. RMIJDBC MODEL

This appendix provides the source code for the RMI implementation. It is

organized from the graphical user interface, down through the logic modules as depicted

in the following figure.

mainFrame

passwordDlg

basicFrame

acctsdb Int

BasicUser Admin Broker

genericFrame

navydb Int

adminFrame

dbAdminBroker Int

acessPanel

brokerSQLFrame

dbBroker Int

acctsdb_Imp navydb_Imp dbAdminBroker_Imp

navy

dbBroker
Imp

objectServer

odbc
32 rrniregistry

Figure 24 : RMI Object Model

161

The model is implemented as follows: The rmiregistry and object server must be

started on the remote machine. The object server instantiates and reqisters the remote

objects. The client application consists of a mainframe, and can be started on any

machine. The mainFrame is an application that has a menu bar with the following

options: Basic User, Admin, and Broker.

Under the Basic User option the user can select accounts or navy. A password

dialog box is displayed (1). When the user enters his name and information, it calls the

remote object, either navy or accounts method getAccessPolicy(2) which returns an

access policy object. The access policy object defines an access code, which allows the

user to get a certain database view (different GUI basic or generic). The intent here is to

show that policy can reside on the server, yet be enforced on the client. Based upon the

access code the user may get a genericFrame, or a basicFrame(3).

The basic frame provides a few high level methods that invoke the remote

acctsdb_Impl object. A basicFrame was not implemented for the navy database. The

generic frame allow the user to enter a SQL statement and is more appropriate for a

database administrator. Both frames make remote calls through the accts or navy db

implementation objects.

The admin menu option displays the admin Utility Frame. The admin frame

invokes remote methods provided by dbAdminBroker_Impl. This implementation uses

JDBC to maintain a database of user names, passwords and available data sources. When

a datasource is going to be made available to the organization, the DBA would create an

ODBC aliase to the datasource (We used the JDBC-ODBC bridge to provide a generic

implementation). Then the administrator would enter the datasource into the available

databases table via the admin utility tool/frame. The admin Frame consists of three

options: user, access, and admin. The admin panel is used to add datasources to the

datasource list. The user panel allows the administrator to enter a user name and

password, and allow that person access, or delete his/her access from the system. The

access panel is used to authorize users access to specific datasources.

The broker option from the main application, opens an accessPanel. After the

user enters his name and password, the panel uses the remote dbAdminBrokerJnt to

ensure the client has access to the system and populates a drop down menu with the

datasources the user has access to. When the user selectes a datasource, it creates a

brokerSQLFrame, which uses the datasource selected to invoke the setConnection

method implemented by dbBrokerJmpl. The user can then perfrom basic database

manipulation functions.

162

// File: mainFrame.Java
// Purpose: The main window for the application, GUI created
// by Visual Cafe
//*********+***

import java.awt.*;
import java.rmi.*; //for RMI
import java.util.*; //for vector

public class mainFrame extends Frame
{

//remote objects
static navydblnt navydbServer = null;
static acctsdblnt acctsdbServer = null;
static accessPolicy_Int policy = null;

//remotelnterface flags
static boolean remoteAccts = false;
static boolean remoteNavy = false;
static int accessCode = -1;

public mainFrame()
{

//only need one security manager.
System.setSecurityManager(new RMISecurityManager ()) ;

// This code is automatically generated by Visual Cafe

//{{INIT_CONTROLS
setLayout(null);
setvisible(false) ;
setSize(insets().left + insets().right + 600, insets().top +

insets().bottom + 400);
openFileDialogl = new Java.awt.FileDialog(this);
openFileDialogl.setMode(FileDialog.LOAD);
openFileDialogl.setTitle("Open");
//$$ openFileDialogl.move(4 0,277);
broker_Panel = new java.awt.Panel();
broker_Panel.setLayout(null);
broker_Panel.setvisible(false);
broker_Panel.setBounds(insets().left + 12,insets().top + 36,578,213);
add(broker_Panel);
label1 = new java.awt.Label("User ID:");
labell.setBounds(144,24,99,27);
broker_Panel.add(labell);
name_TF = new java.awt.TextField();
name_TF.setBounds(252,24,150,25);
broker_Panel.add(name_TF);
label2 = new Java.awt.Label("Authorized Access To:");
label2.setBounds(96,156,132,27);
broker_Panel.add(label2);
dsn_Choices = new java.awt.Choice ();
broker_Panel.add(dsn_Choices);
dsn_Choices.setBounds(252,156,135,26);
password_TF = new Java.awt.TextField();
password_TF.setEchoChar('*');
passwordJTF.setBounds(252, 60,150,25);

163

broker_Panel.add(password_TF);
label3 = new Java.awt.Label("User Password:");
label3.setBounds(144,60,96,19);
broker_Panel.add(label3);
submit_Button = new Java.awt.Button();
submit_Button.setActionCommand("button") ;
submit_Button.setLabel("Submit") ;
submit_Button.setBounds(204,96,75,25) ;
submit_Button.setBackground(new Color(12632256));
broker_Panel.add(submit_Button) ;
cancel_Button = new java.awt.Button();
cancel_Button.setActionCommand("button") ;
cancel_Button.setLabel("Cancel") ;
cancel_Button.setBounds(324,96, 75, 25) ;
cancel_Button.setBackground(new Color(12632256));
broker_Panel.add(cancel_Button) ;
go_Button = new j ava.awt.Button();
go_Button.setActionCommand("button");
go_Button.setLabel("GO");
go_Button.setBounds(408,156,40,22) ;
go_Button.setBackground(new Color(12632256));
broker_Panel.add(go_Button);
statusBar = new java.awt.TextField() ;
statusBar.setBounds(insets ().left + 0,insets().top + 372,600,29);
add(statusBar);
setTitle("JDBC Remote Method Invocation");
//}}

//{{INIT_MENUS
mainMenuBar = new java.awt.MenuBar();
menul = new Java.awt.Menu("File") ;
miExit = new Java.awt.MenuItem("Exit");
menul.add(miExit);
mainMenuBar.add(menul);
DataSources = new java.awt.Menu("Administrator");
admi_AdminTool = new java.awt.Menultem("Admin Tool");
DataSources.add(admi_AdminTool) ;
mainMenuBar.add(DataSources) ;
menu2 = new java.awt.Menu("Basic User");
basicAccts = new java.awt.Menultem("Accounts");
menu2.add(basicAccts);
basicUserNavy = new java.awt.Menultem("Naval Group");
menu2.add(basicUserNavy);
mainMenuBar.add(menu2);
m_Broker = new Java.awt.Menu("Broker") ;
broker_DataAccess = new java.awt.Menultem("Data Access");
m_Broker.add(broker_DataAccess) ;
mainMenuBar.add(m_Broker) ;
menu3 = new java.awt.Menu("Help") ;
mainMenuBar.setHelpMenu(menu3) ;
miAbout = new Java.awt.Menultem("About..");
menu3.add(miAbout);
mainMenuBar.add(menu3);
setMenuBar(mainMenuBar);
//$$ mainMenuBar.move(4,277);

//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow) ;
SymAction lSymAction = new SymActionO;
miAbout.addActionListener(lSymAction);
miExit.addActionListener(lSymAction);

164

basicUserNavy.addActionListener(lSymAction);
basicAccts.addActionListener(lSymAction);
broker_DataAccess.addActionListener(lSymAction);
cancel_Button.addActionListener(lSymAction);
submit_Button.addActionListener(lSymAction);
go_Button.addActionListener(lSymAction);
admi_AdminTool.addActionListener(lSymAction);
//}}

public mainFrame(String title)
{

this() ;
setTitle(title);

}

public synchronized void show()
{

move(50, 50) ;
super.show();

}

static public void main(String args[])
{

(new mainFrame()).show();
}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify() ;

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize (insets () .left + insets (). right + d.width, insetsO-top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation() ;
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
java.awt.FileDialog openFileDialogl;
java.awt.Panel broker_Panel;
java.awt.Label labell;
java.awt.TextField name_TF;
java.awt.Label label2;
java.awt.Choice dsn_Choices;
java.awt.TextField password_TF;

165

java.awt.Label label3;
java.awt.Button submit_Button;
java.awt.Button cancel_Button;
java.awt.Button go_Button;
java.awt.TextField statusBar;
//}}

//{{DECLARE_MENUS
java.awt.MenuBar mainMenuBar;
java.awt.Menu menul;
java.awt.Menultem miExit;
Java.awt.Menu DataSources;
java.awt.Menultem admi_AdminTool;
j ava.awt.Menu menu2;
Java.awt.Menultem basicAccts;
j ava.awt.Menultem basicUserNavy;
java.awt.Menu m_Broker;
j ava.awt.Menultem broker_DataAccess;
java.awt.Menu menu3;
java.awt.Menultem miAbout;

//}}

class SymWindow extends java.awt.event.WindowAdapter

{
public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == mainFrame.this)

Framel_WindowClosing(event) ;
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
dispose(); // free the system resources
System.exit(0); // close the application

}

class SymAction implements java.awt.event.ActionListener

{
public void actionPerformed(java.awt.event.ActionEvent event)

{
Object object = event.getSource();
if (object == miAbout)

miAbout_Action(event);
else if (object == miExit)

miExit_Action(event);

else if (object ==■ basicUserNavy)
navy_Action(event);

else if (object == basicAccts)
menuIteml_Action(event);

else if (object == broker_DataAccess)
brokerDataAccess_Acti.on (event) ;

else if (object == cancel_Button)
cancelButton_Action(event);

else if (object == submit_Button)
submitButton_Action(event);

else if (object == go_Button)
goButton_Action(event);

else if (object == admi_AdminTool)
admiAdminTool_Action(event);

166

}

}

void miAbout_Action(Java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from About Create and show as modal
(new AboutDialog(this, true)).show();
//}}

}

void miExit_Action(Java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from Exit Create and show as modal
(new QuitDialog(this, true)).show();
//}}

}

void miOpen_Action(Java.awt.event.ActionEvent event)
{

//{{CONNECTION
// Action from Open... Show the OpenFileDialog
openFileDialogl.show();
//}}

}
//dba selected accounts

void acctsDB_Action(Java.awt.event.ActionEvent event)
{

// Create and show the Frame
(new genericSQLFrame("accounts")).show();

}
//dba selected navy
void navyDB_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Create and show the Frame
(new genericSQLFrame("navy")).show();
//}}

}

//basic user navy
void navy_Action(java.awt.event.ActionEvent event)
{

//bound to navy server
remoteNavy = true;
bindRMIObject();

//{{CONNECTION
// Create and show as modal
(new PasswordDialog(this, true)).show();
//}}

}

//basic user accounts
void menuIteml_Action(Java.awt.event.ActionEvent event)
{

remoteAccts = true;
bindRMIObject() ;
PasswordDialog passDlg = new PasswordDialog(this, true);

167

passDlg.show();

//open a new basic userframe
// Create and show the Frame
(new basicAcctFrame(acctsdbServer)).show();
//}}

}

public static void lookup(String user, String pw)
{

//get the policy
if(remoteNavy){

try{
policy = navydbServer.getAccessPolicy();
}catch(RemoteException e){

System.out.println("Remote Exception: " + e);
}

}
else if(remoteAccts){

try{
policy = acctsdbServer.getAccessPolicy();
}catch(RemoteException e){

System.out.println("Remote Exception: " + e);
}

}

//get the access code
accessCode = policy.getAccessCode(user);
//test the policy
System.out.println(user + " Access Code = " + accessCode);

if (accessCode == 1){
if(remoteNavy)

(new genericSQLFrame("navy")).show();
else if(remoteAccts)

(new genericSQLFrame("accounts")).show();

}else if(accessCode == 2){

//show a dialog box stating not autthorized.
System.out.println("To Do");

}else
System.out.println("Not a valid Access Code");

}

// Function : bindRMIObject()
// Purpose: Binds client to remote object, allowing client
// to execute methods defined in the objects interface
//••■a:**

public void bindRMIObject()
{

try{

if(remoteNavy){
System.out.println("Binding to Remote Navy Data Base...")
navydbServer =

(navydblnt)Naming.lookup("rmi://131.120.1.91/navydbServer");
}else if(remoteAccts){

System.out.println("Binding to Remote Accounts Data Base.

168

acctsdbServer =
(acctsdblnt)Naming.lookup("rmi://131.120.1.91/acctsdbServer");

}

} catch(NotBoundException e){
System.out.println("NotBoundException" + e);

}catch(RemoteException e){
System.out.println("Remote Exception " + e);

}catch(java.net.MalformedURLException e){
System.out.println(e) ;

}

}//end bindRMIObject

//************************* USER SELECTS Broker/DATA ACCESS ****************
dbAdminBroker_Int adminBrokerServer = null;

//********************** ************ *******************

// Function : bindRMIObject()
// Purpose: Binds client to remote object, allowing client
// to execute methods defined in the objects interface
//**

void brokerDataAccess_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.
//bind with adminBroker
try{

//only need one security manager, so install upon initilization of app
//System.setSecurityManager(new RMISecurityManager ());

adminBrokerServer =
(dbAdminBroker_Int)Naming.lookup("rmi://131.120.1.91/adminBrokerServer");

} catch(NotBoundException e){
System.out.println("NotBoundException" + e) ;

}catch(RemoteException e){
System.out.println("Remote Exception " + e);

}catch(java.net.MalformedURLException e){
System.out.println(e);

}

//{{CONNECTION
// Show the Panel
broker_Panel.setVisible(true);
//}}

}

void cancelBut:ton_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.

//{{CONNECTION
// Hide the Panel
broker_Panel.setVisible(false);
statusBar.setText("");

169

nameJTF.setText ("");
password_TF.setText ("");
//}}

}

void submitButton_Action(java.awt.event.ActionEvent event)

{
//get user input
String name = name_TF.getText() ;
String password = password_TF.getText();

//call adminBrokerServer to get database access list
Vector ans = new Vector();

try{
ans = adminBrokerServer.getDBAccess(name);

}catch(RemoteException e){
System.out.println(e);

}
if(!ans.isEmpty()){

Enumeration enum = ans.elements();
while(enum.hasMoreElements()){

String dsn = (String)enum.nextElement();
dsn_Choices.addItem(dsn);

}//end while
}else
statusBar.setText("User is not Authorized Access to any DataBase")

//
//{{CONNECTION
// Hide the Panel
//broker_Panel.setvisible (false);
//}}

}

//user has selected a database to go to
void goButton_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.
String choice = dsn_Choices.getSelectedItem();

//create a genericFrame which will bind to dbBrokerServer
//{{CONNECTION
// Create and show the Frame
(new brokerSQLFrame(choice)).show();
//}>

//clear text fields
name_TF.setText("");
password_TF.setText("");
dsn_Choices.removeAll();
//{{CONNECTION
// Hide the Panel
broker_Panel.setvisible(false);
//}}

}

void admiAdminTool_Action(java.awt.event.ActionEvent event)

{
// to do: code goes here.

170

//{{CONNECTION
// Create and show the Frame
(new Framel()).show();
//}}

}
}
//***

//end mainFrame.Java
//** ***********

//***

// File: basicAcctFrame.Java
// Purpose: A simple frame, that allows client ability to
// enter a new employee into the accts database,
// or retrieve a list of existing employees
//• GUI implemented with Visual Cafe
//***

import java.rmi.*;
import j ava.awt.*;
import java.util.*; //stringtokenizer

public class basicAcctFrame extends Frame
{

acctsdblnt server = null;
public basicAcctFrame()
{

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setVisible(false);
setSize(insets ().left + insets().right + 430,insets().top +

insets().bottom + 343);
newEmployeePanel = new Java.awt.Panel() ;
newEmployeePanel.setLayout(null);
newEmployeePanel.setVisible(false);
newEmployeePanel.setBounds(insets().left + 108,insets().top +

36,228,144);
add(newEmployeePanel);
tnameTextField = new java.awt.TextField();
tnameTextField.setBounds(60,12,120,19);
newEmployeePanel.add(tnameTextField);
Groupl = new CheckboxGroup();
facultyRadioButton = new java.awt.Checkbox("", Groupl, false);
facultyRadioButton.setBounds(72,36,24,16);
newEmployeePanel.add(facultyRadioButton);
labell = new java.awt.Labe1("Name");
labell.setBounds(12,12,82,20);
newEmployeePanel.add(labell);
label2 = new java.awt.Label("Faculty");
label2.setBounds(12,36,82,20);
newEmployeePanel.add(label2);
insertButton = new java.awt.Button();
insertButton.setActionCommand("button");
insertButton.setLabel("Insert");
insertButton.setBounds(132,84,88,23);

. insertButton.setBackground(new Color (12632256));
newEmployeePanel.add(insertButton) ;

171

cancelButton = new Java.awt.Button();
cancelButton.setActionCommand("button");
cancelButton.setLabel("Cancel") ;
cancelButton.setBounds(36,84,88,23);
cancelButton.setBackground(new Color(12632256));
newEmployeePanel.add(cancelButton) ;
employeeListPanel = new Java.awt.Panel();
employeeListPanel.setLayout(null);
employeeListPanel.setVisible(false);
employeeListPanel.setBounds(insets() .left + 0,insets().top + 36,415,216);
add(employeeListPanel);
employeeViewList = new Java.awt.List(0,false);
employeeListPanel.add(employeeViewList);
employeeViewList.setBounds(36,0,314,160);
okButton = new java.awt.Button();
okButton.setActionCommand("button");
okButton.setLabel("OK") ;
okButton.setBounds(156,168,62,27);
okButton.setBackground(new Color(12632256));
employeeListPanel.add(okButton);
setTitle("Basic User Account Frame");

//}}

//{{INIT_MENUS
menuBarl = new java.awt.MenuBar();
file = new Java.awt.Menu("File");
exit = new java.awt.Menultem("Exit");
file.add(exit);
menuBarl.add(file);
menul = new Java.awt.Menu("Views");
employeeView = new java.awt.Menultem("Employees");
menul.add(employeeView) ;
menuBarl.add(menul);
insert = new Java.awt.Menu("Insert");
Employee = new Java.awt.MenuItem("Employee");
insert.add(Employee);
menuBarl.add(insert);
setMenuBar(menuBarl);
//$$ menuBarl.move(0,0);
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymActionO;
exit.addActionListener(lSymAction);
Employee.addActionListener(lSymAction);
insertButton.addActionListener(lSymAction);
employeeView.addActionListener(lSymAction);
okButton.addActionListener(lSymAction);
cancelButton.addActionListener(lSymAction);
//}}

}

public basicAcctFrame(acctsdblnt server)
{

this();
this.server = server;

}

public basicAcctFrame(String title)
{

thisO ;

172

setTitle(title);
}

public synchronized void show()
{

move(50, 50);
super.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify() ;

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
java.awt.Panel newEmployeePanel;
java.awt.TextField tnameTextField;
java.awt.Checkbox facultyRadioButton;
CheckboxGroup Groupl;
java.awt.Label labell;
java.awt.Label label2;
java.awt.Button insertButton;
java.awt.Button cancelButton;
j ava.awt.Panel employeeListPanel;
java.awt.List employeeViewList;
java.awt.Button okButton;
//}}

//({DECLARE_MENUS
java.awt.MenuBar menuBarl;
java.awt.Menu file;
java.awt.MenuItem exit;
java.awt.Menu menul;
java.awt.Menultem employeeView;
java.awt.Menu insert;
java.awt.Menultem Employee;
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

173

Object object = event.getSource();
if (object == basicAcctFrame.this)

Framel_WindowClosing(event) ;

}
}

void Framel_WindowClosing(java.awt.event.WindowEvent event)

{ ~ ..
hideO; // hide the Frame

}

class SymAction implements java.awt.event.ActionListener

{
public void actionPerformed(java.awt.event.ActionEvent event)

{
Object object = event.getSource();
if (object == exit)

exit_Action(event);
else if (object == Employee)

Employee_Action(event);
else if (object == insertButton)

insertButton_Action(event);
else if (object == employeeView)

employeeView_Action(event);
else if (object == okButton)

okButton_Action(event);
else if (object == cancelButton)

cancelButton_Action(event);

}
}

void exit_Action(java.awt.event.ActionEvent event)

{
// to do: code goes here.

//{{CONNECTION
// Hide the Frame
setvisible(false);
//}}

}

void Employee_Action(java.awt.event.ActionEvent event)

{
// to do: code goes here.

//{{CONNECTION
// Show the Panel
newEmployeePanel.setvisible(true);
//}}

}

void insertButton_Action(java.awt.event.ActionEvent event)

{
// to do: code goes here.
String name = tnameTextField.getText();
boolean fac = facultyRadioButton.getState();
System.out.println(name + " " + fac);
if(name.equals("")){

return;
}
try{

server.insertEmployee(name, fac) ;
}catch(RemoteException e){

174

System.out.printin(e) ;
}

//{(CONNECTION
// Hide the Panel
newEmployeePanel.setVisible(false) ;
//}}

}

void employeeView_Action(java.awt.event.ActionEvent event)
{

String result = null;
//get results
try(

result = server.viewEmployees() ;
}catch(RemoteException e) {

System.out.println(e) ;
}

//process the results
//print one tuple per line using new line as delimitor
StringTokenizer tok = new StringTokenizer(result, "\n");

if(result == null){
System.out.println("No reults found");
employeeViewList.addltemf'No results were generated");

}else{
int count = tok.countTokens();
for (int ix = 1; ix <= count; ix++){

String tuple = tok.nextToken();
employeeViewList.addItem(tuple);

}//end for
}//end else

//{{CONNECTION
// Show the Panel
employeeListPanel.setVisible(true);
//}}

}

void okButton_Action(Java.awt.event.ActionEvent event)
{

// Hide the Panel
employeeListPanel.setVisible(false);

}

void cancelButton_Action(java.awt.event.ActionEvent event)
(

// to do: code goes here.
newEmployeePanel.setVisible(false);

}
}

// End File: basicAcctFrame.Java

// File: genericSQLFrame.java
// Purpose: A generic frame that displays the database table
// names, and column Names. User enters a SQL query
// and frame displays result set. Constructor accepts
// datasource name, to bind to.
// GUI created by Visual Cafe.

175

// ***

import java.awt.*;
import java.rmi.*; //for remote object binding
import java.sql.*; //for resultSet manipulation
import java.util.*; //for Vector
import java.io.*; //for sleep function

import Symantec.itools.awt.BorderPanel;
public class genericSQLFrame extends Frame
{

//class scope usage
dbUtil dbUtilities = null; //for print functions
//remote objects
navydblnt navydbServer = null;
accessPolicy_Int currentAccessPolicy = null;
acctsdblnt acctsdbServer = null;

//remotelnterface flags
boolean accts = false;
boolean navy = false;

static StringBuffer buff = null;

public genericSQLFrame()
{

//MY CODE
//create a global dbUtilities tool
dbUtilities = new dbUtilO;
buff = new StringBuffer();

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setvisible(false);
setSize(insets().left + insets().right + 650,insets().top +

insets().bottom + 500);
panell = new Java.awt.Panel();
panell.setLayout(null) ;
panell.setBounds(insets().left + 0,insets().top + 36,360,96);
add(panell);
tableNames = new Java.awt.Choice() ;
panell.add(tableNames);
tableNames.setBounds(25,40,150,25);
db = new java.awt.Label("Data Base Tables");
db.setBounds(48,0,106,20);
panell.add(db);
label2 = new Java.awt.Label("Table Column Names");
label2.setBounds(192,0,132,23) ;
panell.add(label2);
columnChoices = new java.awt.Choice();
panell.add(columnChoices);
columnChoices.setBounds(192,40,150,25);
resultSet = new java.awt.List(0, false);
add(resultSet);
resultSet.setBounds(insets()-left + 36,insets().top + 168,588,169);
clearList = new java.awt.Button();
clearList.setActionCommand("button");

176

clearList.setLabel ("Clear List");
clearList.setBounds(insets().left + 312,insets().top + 360,77,27);
clearList.setBackground(new Color(12632256));
add(clearList);
panel2 = new java.awt.Panel();
panel2.setLayout(null);
panel2.setBounds(insets().left + 360,insets().top + 36,273,108);
add(panel2);
labell = new java.awt.Label("Enter SQL Statement Below");
labell.setBounds(24,0,168, 32);
labell.setForeground(new Color(255));
panel2.add(labell);
sqlStmt = new java.awt.TextField();
sqlStmt.setBounds(0,36,264,25);
panel2.add(sqlStmt);
sendSQL = new java.awt.Button() ;
sendSQL.setActionCommand("button");
sendSQL.setLabel("Submit") ;
sendSQL.setBounds(168,72,76,28);
sendSQL.setBackground(new Color(12632256));
panel2.add(sendSQL);
clearSQL = new java.awt.Button();
clearSQL.setActionCommand("button");
clearSQL.setLabel("Clear");
clearSQL.setBounds(36,72,85,27);
clearSQL.setBackground(new Color(12632256)) ;
panel2.add(clearSQL);
label3 = new java.awt.Label("Result Set");
label3.setBounds(insets().left + 24,insets().top + 132,96,24);
add(label3) ;
exitButton = new java.awt.Button() ;
exitButton.setActionCommand("button");
exitButton.setLabel("Exit") ;
exitButton.setBounds(insets().left + 312,insets().top + 408,72,23);
exitButton.setBackground(new Color(16711680));
add(exitButton);
accessCodeTextField = new Java.awt.TextField();
accessCodeTextField.setBounds(insets().left + 48,insets().top +

384,68,26);
add(accessCodeTextField) ;
label4 = new Java.awt.Label("Access Code");
label4.setBounds(insets().left + 48,insets().top + 360,84,20);
add(label4);
setTitle("Navy Data Source");
//}}

//{{INIT_MENUS
menuBarl = new java.awt.MenuBar();
menul = new Java.awt.Menu("File");
fileExit = new java.awt.MenuItem("Exit");
menul.add(fileExit);
menuBarl.add(menul);
menu2 = new java.awt.Menu("Policy") ;
menulteml = new java.awt.Menultem("Get Current");
menu2.add(menulteml);
menuBarl.add(menu2);
menu3 = new java.awt.Menu("Users") ;
userAdd = new java.awt.Menultem("Add User");
menu3.add(userAdd);
menuBarl.add(menu3);
setMenuBar(menuBarl);
//$$ menuBarl.move(0,0);
//}}

177

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymAction();
sendSQL.addActionListener(lSymAction);
clearList.addActionListener(lSymAction);
Symltem lSymltem = new SymltemO;
tableNames.addltemListener(lSymltem);
clearSQL.addActionListener(lSymAction);
exitButton.addActionListener(lSymAction);
fileExit.addActionListener(lSymAction);
menulteml.addActionListener(lSymAction);
userAdd.addActionListener(lSymAction);
//}}

}

// Function: genericSQLFrame(String dsn)
// Purpose: Constructor, uses dsn to bind to remote object,
// get the database table names, and update frame title

public genericSQLFrame(String dsn)
{

this();

if(dsn.equals("navy")){
setTitle("Naval Support Group Data Base");
this.navy = true;

}
else if(dsn.equals("accounts")){

setTitle("Accounts Data Base");
this.accts = true;

}
//bind to remote object
bindRMIObjectO ;

//update database table drop down
getDataBaseTables();

}

//**■******■*****************-*****•**********■**■ + ****■■*■***•

// Function: getDataBaseTables(String remoteObj)
// Purpose: Based upon remoteOjb communicating with
//•it***

public void getDataBaseTables()
{

Vector ans = new Vector();
try{

if(navy){
ans = navydbServer.getTableName() ;

}
else if(accts) {

ans = acctsdbServer.getTableName();
}

}catch(RemoteException e){
System.err.println(e);

}

178

Enumeration enum = ans.elements();
while(enum.hasMoreElements()){

String name = (String)enum.nextElement();
//update the tableNames
tableNames.addltem(name);

}

}//end getDataBaseTables

public void updateColumnList(String tableName)
{

columnChoices.removeAll(); //clear the column choice object

if(tableName != null){
StringBuffer buff = new StringBuffer("SELECT * FROM ");
buff.append(tableName);

String sql = new String(buff);
Vector colVect = new Vector();
try{

if(navy){

colVect = navydbServer.getTableMetaData(sql);
}else if (accts){

colVect = acctsdbServer.getTableMetaData(sql) ;
}

}catch(RemoteException e){
System.out.println(e);

} '
//now update colChoiceBox
Enumeration enum = colVect.elements();
while(enum.hasMoreElements()){

String name = (String)enum.nextElement();
//update the tableNames
columnChoices.addltem(name) ;

}
}

}//end function

// Function : bindRMIObject ()
// Purpose: Binds client to remote object, allowing client
// to execute methods defined in the objects interface

public void bindRMIObject()
{
try{

if(navy){

System.out.println("Binding to Remote Navy Data Base...");
navydbServer =

(navydblnt)Naming.lookup("rmi://131.120.1.91/navydbServer");
}else if(accts){

System.out.println("Binding to Remote Accounts Data Base...");
acctsdbServer =

(acctsdblnt)Naming.lookup("rmi://131.120.1.91/acctsdbServer");
}

} catch(NotBoundException e){
System.out.println("NotBoundException" + e) ;

}catch(RemoteException e){
System.out.println("Remote Exception " + e);

179

}catch(Java.net.MalformedURLException e){
System.out.println(e);

}

}//end bindRMIObject

public synchronized void show()
{

move(50, 50);
super.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets ().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
java.awt.Panel panell;
java.awt.Choice tableNames;
java.awt.Label db;
java.awt.Label label2;
java.awt.Choice columnChoices;
java.awt.List resultSet;
java.awt.Button clearList;
java.awt.Panel panel2;
java.awt.Label labell;
java.awt.TextField sqlStmt;
java.awt.Button sendSQL;
java.awt.Button clearSQL;
java.awt.Label label3;
java.awt.Button exitButton;
java.awt.TextField accessCodeTextField;
java.awt.Label label4;
//}}

//{{DECLARE_MENUS
java.awt.MenuBar menuBarl;
j ava.awt.Menu menul;
java.awt.Menultem fileExit;

180

j ava.awt.Menu menu2;
Java.awt.Menultem menulteml;
j ava.awt.Menu menu3;
Java.awt.Menultem userAdd;
//}}

class SymWindow extends Java.awt.event.WindowAdapter
{

public void windowClosing(Java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == genericSQLFrame.this)

Framel_WindowClosing(event);
}

}

void Framel_WindowClosing(Java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == sendSQL)

sendSQL_Action(event);
else if (object — clearList)

clearList_Action(event);
else if (object == clearSQL)

clearSQL_Action(event);
else if (object == exitButton)

exitButton_Action(event);
else if (object == fileExit)

fileExit_Action(event);
else if (object == menulteml)

menuIteml_Action(event);
else if (object == userAdd)

userAdd_Action(event);
}

}

// Function : sendSQL_Action
// Purpose: User has entered a SQL statement and hit the send button
// Gets the result set and displays it in the result list

void sendSQL_Action(java.awt.event.ActionEvent event)
{

String sql = sqlStmt.getText();//get the statement

try{
String result = new String();

if(navy){
result = navydbServer.executeSQLGetString(sql);

}else if(accts){
result = acctsdbServer.executeSQLGetString(sql);

}

//print one tuple per line using new line as delimitor
StringTokenizer tok = new StringTokenizer(result, "\n");

181

if(result == null){
System.out.println("No reults found");

}else{
int count = tok.countTokens();
for (int ix = 1; ix <= count; ix++){

String tuple = tok.nextToken();
resultSet.addltem(tuple);

}//end for
}//end else

}catch(RemoteException e){
System.out.println(e);

}
//clear the sql statement text box
sqlStmt.setText("");

}//end func

void clearList_Action(Java.awt.event.ActionEvent event)

{
resultSet.removeAll();

}//end clearList

class Symltem implements Java.awt.event.ItemListener
{

public void itemStateChanged(Java.awt.event.ItemEvent event)
{

Object object = event.getSource();
if (object == tableNames)

tableNames_ItemStateChanged(event);
}

>

// Function: tableNames Action Handler
// Gets the item selected from choice box and updates teh column choice box
//**********+**************•*****•*******************•*

void tableNames_ItemStateChanged(java.awt.event.ItemEvent event)
{

String item = tableNames.getSelectedItem();
updateColumnList(item);

}

void clearSQL_Action(java.awt.event.ActionEvent event)
{

// Clear the text for TextField
sqlStmt.setText("");

}

// Function: exit_Button_Action
//***

void exitButton_Action(java.awt.event.ActionEvent event)
{

if(navy)
mainFrame.remoteNavy = false;

else if(accts)
mainFrame.remoteAccts = false;

182

hide(); // hide the Frame
dispose(); // free the system resources

}

void fileExit_Action(Java.awt.event.ActionEvent event)
{

if(navy)
mainFrame.remoteNavy = false;

else if(accts)
mainFrame.remoteAccts = false;

hide(); // hide the Frame
dispose(); // free the system resources

void menuIteml_Action(java.awt.event.ActionEvent event)
{

if(navy){
try{

currentAccessPolicy = navydbServer.getAccessPolicy();
System.out.printlnt"Got new Policy");

}catch(RemoteException e){
System.out.println("Remote Exception: " + e);

>
}
String user = "basic";
int accessCode = currentAccessPolicy.getAccessCode(user);
accessCodeTextField.setText(String.valueOf(accessCode));

//test the policy
System.out.println(user + " Access Code = " + accessCode);

//}}
}

void userAdd_Action(java.awt.event.ActionEvent event)
{

// Create and show as modal
(new newUser (this, true)).show();

StringTokenizer tok = new StringTokenizer(buff.toString())

String uid = tok.nextToken();
String pass = tok.nextToken();
String dsn = tok.nextToken();

if(dsn.equals("navy")){
//add user to navy accessList

}
else if(dsn.equals("accts")){

}
}

}//end class

// END: genericSQLFrame.java

183

// File: adminFrame.java
// Purpose: An administrator frame, to enter new users,
// provide them database access, and to enter
// new datasources.

import java.awt.*;

public class adminFrame extends Frame

{
public adminFrame()
{

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setSize(insets().left + insets().right + 430,insets().top +

insets().bottom + 270);
setTitleC'Untitled") ;

//}}

//{{INIT_MENUS
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
//}}

}

public adminFrame(String title)
{

thisO ;
setTitle (title);

}

public synchronized void show()

{
move(50, 50);
super.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize (insets () .left + insets (). right + d.width, insetsO.top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)

{
Point p = components[i].getLocation();

184

p.translate(insets{).left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
//}}

//{{DECLARE_MENUS
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == adminFrame.this)

Framel_WindowClosing(event);
}

}

void Framel_WindowClosing(java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
}

}
//***

// END: adminFrame.java
//*** ********************

//***

// File: brokerSQLFrame.java
// Purpose: A generic frame that can be bound to any ODBC datasource.
// The constructor accepts a string which is used to establish
// JDBC-ODBC connection, via the dbBrokerlmplementation
//***

import j ava.awt.*;
import java.rmi.*; //for remote object binding
import java.sql.*; //for resultSet manipulation
import java.util.*; //for Vector
import java.io.*; //for sleep function
import Symantec.itools.awt.BorderPanel;

public class brokerSQLFrame extends Frame
{

//class scope usage
dbUtil dbUtilities = null; //for print functions
//remote objects

dbBroker_Int server = null;

public brokerSQLFrame()
{

//MY CODE
//create a global dbUtilities tool
dbUtilities = new dbUtiK);

185

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setVisible(false);
setSize(insets().left + insets().right + 650,insets().top +

insets().bottom + 500);
panell = new java.awt.Panel() ;
panel1.setLayout(null);
panell.setBounds(insets().left + 0,insets().top + 36,360,96);
add(pane11);
tableNames = new java.awt.Choice();
panel1.add(tableNames);
tableNames.setBounds(25,40,150,25) ;
db = new java.awt.Label("Data Base Tables");
db.setBounds(48,0,106,20);
panell.add(db);
label2 = new java.awt.Label("Table Column Names");
label2.setBounds(192,0,132,23);
panell.add(label2);
columnChoices = new java.awt.Choice() ;
panell.add(columnChoices) ;
columnChoices.setBounds(192,40,150,25);
resultSet = new java.awt.List(0, false) ;
add(resultSet);
resultSet.setBounds(insets().left + 36,insets().top + 168,588,169);
clearList = new java.awt.Button();
clearList.setActionCommand("button") ;
clearList.setLabel("Clear List");
clearList.setBounds(insets().left + 312,insets().top + 360,77,27);
clearList.setBackground(new Color(12632256)) ;
add(clearList);
panel2 = new java.awt.Panel();
panel2.setLayout(null);
panel2.setBounds(insets().left + 360,insets().top + 36,273,108);
add(panel2);
labell = new java.awt.Label("Enter SQL Statement Below");
labell.setBounds(24,.0,168,32);
labell.setForeground(new Color(255));
panel2.add(labell);
sqlStmt = new java.awt.TextField();
sqlStmt.setBounds(0,36,264,25) ;
panel2.add(sqlStmt);
sendSQL = new java.awt.Button();
sendSQL.setActionCommand("button");
sendSQL.setLabel("Submit");
sendSQL.setBounds(168,72,76,28) ;
sendSQL.setBackground(new Color(12632256));
panel2.add(sendSQL);
clearSQL = new java.awt.Button();
clearSQL.setActionCommand("button");
clearSQL.setLabel("Clear");
clearSQL.setBounds(36,72,85,27);
clearSQL.setBackground(new Color(12632256));
panel2.add(clearSQL);
label3 = new java.awt.Label("Result Set");
label3.setBounds(insets().left + 24,insets().top + 132,96,24);
add(label3);

186

exitButton = new Java.awt.Button() ;
exitButton.setActionCommand("button");
exitButton.setLabel("Exit");
exitButton.setBounds(insets().left + 312,insets().top + 408,72,23)
exitButton.setBackground(new Color(16711680));
add(exitButton);
setTitle("Navy Data Source");
//>>

//{{INIT_MENUS
menuBarl = new Java.awt.MenuBar();
menul = new Java.awt.Menu("File") ;
fileExit = new java.awt.Menultem("Exit") ;
menul.add(fileExit);
menuBarl.add(menul);
setMenuBar(menuBarl);
//$$ menuBarl.move(0,0);
//}}

//{{REGISTER_LISTENERS
SymWindow aSymWindow = new SymWindow();
this.addWindowListener(aSymWindow);
SymAction lSymAction = new SymAction();
sendSQL.addActionListener(lSymAction);
clearList.addActionListener(lSymAction);
Symltem lSymltem = new SymltemO;
tableNames.addltemListener(lSymltem);
clearSQL.addActionListener(lSymAction);
exitButton.addActionListener(lSymAction);
fileExit.addActionListener(lSymAction);
//}}

}

// Function: genericSQLFrame(String dsn)
// Purpose: Constructor, uses dsn to bind to remote object,
// get the database table names, and update frame title

public brokerSQLFrame(String dsn)
{

this();

setTitle(dsn);

//bind to remote object
try{

System.out.println ("Binding to dbBroker for " + dsn);
server =

(dbBroker_Int)Naming.lookup("rmi://131.120.1.91/dbBrokerServer");

} catch(NotBoundException e){
System, out. println ("NotBoundException" + e) ,-

}catch(RemoteException e){
System.out.println("Remote Exception " + e);

}catch(java.net.MalformedURLException e) {
System.out.println(e) ;

}

//create a connection
try{

187

server.createConnection(dsn, "", "");
}catch(RemoteException e){

System.out.println(e) ;
}

//update database table drop down
getDataBaseTables();

}

// Function: getDataBaseTables(String remoteObj)
// Purpose: Based upon remoteOjb communicating with
//•it***

public void getDataBaseTables ()
{

Vector ans = new Vector{);
try{

ans = server.getTableNames();

}catch(RemoteException e){
System.err.println(e);

}

Enumeration enum = ans.elements();
while(enum.hasMoreElements()){

String name = (String)enum.nextElement();
//update the tableNames
tableNames.addltem(name);

}

}//end getDataBaseTables

// Function: updateColumnList(String tableName)
// Purpose: Based upon remoteOjb communicating with
//*******+***

public void updateColumnList(String tableName)
{

columnChoices.removeAll(); //clear the column choice object

if(tableName !=null){
StringBuffer buff = new StringBuffer("SELECT * FROM ");
buff.append(tableName);

String sql = new String(buff);
Vector colVect = new Vector();
try{

colVect = server.getTableMetaData(sql);
}catch(RemoteException e){

System.out.println(e);
}
//now update colChoiceBox
Enumeration enum = colVect.elements();
while(enum.hasMoreElements()){

String name = (String)enum.nextElement();
columnChoices.addltem(name);

}
}

}//end function

188

public synchronized void show()
{

move(50, 50) ;
super.show();

}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
java.awt.Panel panel1;
java.awt.Choice tableNames;
java.awt.Label db;
java.awt.Label label2;
java.awt.Choice columnChoices;
java.awt.List resultSet;
Java.awt.Button clearList;
java.awt.Panel panel2;
java.awt.Label labell;
Java.awt.TextField sqlStmt;
Java.awt.Button sendSQL;
java.awt.Button clearSQL;
java.awt.Label label3;
Java.awt.Button exitButton;
//}}

//{{DECLARE_MENUS
java.awt.MenuBar menuBarl;
j ava.awt.Menu menul;
java.awt.Menultem fileExit;
//}}

class SymWindow extends java.awt.event.WindowAdapter
{

public void windowClosing(Java.awt.event.WindowEvent event)
{

Object object = event.getSource();
if (object == brokerSQLFrame.this)

Framel_WindowClosing(event);
}

189

}

void Framel_WindowClosing(Java.awt.event.WindowEvent event)
{

hide(); // hide the Frame
}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == sendSQL)

sendSQL_Action(event);
else if (object == clearList)

clearList_Action(event);
else if (object == clearSQL)

clearSQL_Action(event);
else if (object == exitButton)

exitButton_Action(event);
else if (object == fileExit)

fileExit_Action(event);
}

}

// Function : sendSQL_Action
// Purpose: User has entered a SQL statement and hit the send button
// Gets the result set and displays it in the result list
//*************************+*****•*********************

void sendSQL_Action(Java.awt.event.ActionEvent event)
{

String sql = sqlStmt.getText();//get the statement

try{
String result = new String();

result = server.executeSQLGetString(sql) ;

//print one tuple per line using new line as delimitor
StringTokenizer tok = new StringTokenizer(result, "\n");

if(result == null){
System.out.println("No reults found");

}else{
int count = tok.countTokens();
for (int ix = 1; ix <= count; ix++){

String tuple = tok.nextToken();
resultSet.addltem(tuple);

}//end for
}//end else

}catch(RemoteException e){
System.out.println(e);

}
//clear the sql statement text box
sqlStmt.setText("");

}//end func

// Function: clearList_Action(Java.awt.event.ActionEvent event)

190

// Purpose:

void clearList_Action(Java.awt.event.ActionEvent event)
{

resultSet.removeAll();
}//end clearList

class Symltem implements Java.awt.event.ItemListener
{

public void itemStateChanged(Java.awt.event.ItemEvent event)
(

Object object = event.getSource();
if (object == tableNames)

tableNames_ItemStateChanged(event);
}

}
//******************+*******•******+*******************

// Function: tableNames Action Handler
// Gets the item selected from choice box and updates teh column choice box
//***

void tableNames_ItemStateChanged(Java.awt.event.ItemEvent event)
{

String item = tableNames.getSelectedItem();
updateColumnList(item);

void clearSQL_Action(Java.awt.event.ActionEvent event)
{

// Clear the text for TextField
sqlStmt.setText("");

}

// Function: exit_Button_Action
//*****************•***********+***********+*

void exitButton_Action(Java.awt.event.ActionEvent event)
{

hideO; // hide the Frame
dispose(); // free the system resources

}

void fileExit_Action(Java.awt.event.ActionEvent event)
{

hide(); // hide the Frame
dispose(); // free the system resources

}

}

// END: brokerSQLFrame.Java

// File: newUser.java
// Purpose: A dialog box to enter a new users name and password,
// Calls back to static function in genericSQLFrame

191

import java.awt.*;
import Symantec.itools.awt.util.dialog.ModalDialog;

public class newUser extends ModalDialog
{

public newUser(Frame parent, String title)
{

super(parent, title);

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.
//{{INIT_CONTROLS
setLayout(null);
setvisible(false) ;
setSize(insets().left + insets().right + 215,insets().top +

insets().bottom + 159);
setBackground(new Color(12632256));
nameLabel = new java.awt.Label("Name:");
nameLabel.setBounds(insets().left + 12, insets().top + 12,60,15);
add(nameLabel);
passwordLabel = new Java.awt.Label("Password:");
passwordLabel.setBounds(insets()-left + 12,insets().top + 48,72,15);
add(passwordLabel);
userTextField = new java.awt.TextField(1);
userTextField.setBounds(insets() .left + 84 , insets().top + 12,100,22);
add(userTextField);
passTextField = new java.awt.TextField(1);
passTextField.setEchoChar('*');
passTextField.setBounds(insets().left + 84, insets().top + 48,100,22);
add(passTextField);
okButton = new Java.awt.Button();
okButton.setLabel("OK");
okButton.setBounds(insets().left + 84,insets().top + 132,40,20);
add(okButton) ;
dsnTextField = new Java.awt.TextFieldO ;
dsnTextField.setBounds(insets().left + 84, insets().top + 84,96,21);
add(dsnTextField) ;
labell = new java.awt.Label("Data Source");
labell.setBounds(insets().left + 0,insets().top + 84,72,15);
add(labell);
setTitle("Add a DataBase User");
//}}

//{(REGISTER_LISTENERS
SymAction lSymAction = new SymAction();
okButton.addActionListener(lSymAction);
//}}

}

public newUser(Frame parent)
{

this (parent, "Username/Password");
}

// Add a constructor for Interactions (ignoring modal)
public newUser(Frame parent, boolean modal)
{

this (parent);

192

}

// Add a constructor for Interactions (ignoring modal)
public newUser(Frame parent, String title, boolean modal)

this(parent, title);

public String getUserName()

return userTextField.getText();

public String getPassword()

return passTextField.getText();

public void setUserName(String name)

userTextField.setText(name);

public void setPassword(String pass)

passTextField.setText(pass);

public void addNotifyO

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify();

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize(insets().left + insets().right + d.width, insets().top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets().top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
Java.awt.Label nameLabel;
java.awt.Label passwordLabel;
j ava.awt.TextField userTextField;
j ava.awt.TextField passTextField;
java.awt.Button okButton;
java.awt.TextField dsnTextField;
java.awt.Label labell;
//}}

193

class SymAction implements Java.awt.event.ActionListener
{

public void actionPerformed(Java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == okButton)

okButton_Action(event);
}

}

void okButton_Action(Java.awt.event.ActionEvent event)
{

// to do: code goes here.
String uid = getUserName();
String pass = getPasswordO ;
String dsn = dsnTextField.getText() ;

System.out.printlnfuid + " " + " " + " " + dsn);

genericSQLFrame.buff.append(uid) ;
genericSQLFrame.buff.append(" ") ;
genericSQLFrame.buff.append(pass) ;
genericSQLFrame.buff.append(" ")
genericSQLFrame.buff.append(dsn)
genericSQLFrame.buff.append(" ")

//get rid of box
hide();
dispose();

//{{CONNECTION
// Disable the Button
//okButton.setEnabled(false) ;
//}}

}
}

// END: newUser.java

//*+***

// File: passwordDialog.Java
// Purpose: A dialog box to enter a users name and password,
// Calls back to static function (lookup(uid, pw) in mainFrame
//***+***************•*****************+*****************************

import Java.awt.*;
import Symantec.itools.awt.util.dialog.ModalDialog;

public class PasswordDialog extends ModalDialog
{

public PasswordDialog(Frame parent, String title)
{

super(parent, title);

// This code is automatically generated by Visual Cafe when you add
// components to the visual environment. It instantiates and initializes
// the components. To modify the code, only use code syntax that matches
// what Visual Cafe can generate, or Visual Cafe may be unable to back
// parse your Java file into its visual environment.

194

//{{INIT_CONTROLS
setLayout(null) ;
setvisible(false);
setSize(insets().left + insets().right + 215,insets().top +

insets().bottom + 130);
setBackground(new Color(12632256));
nameLabel = new j ava.awt.Label("Name:") ;
nameLabel.setBounds(insets().left + 10,insets().top + 32,75,15);
add(nameLabel);
passwordLabel = new java.awt.Label("Password:") ;
passwordLabel.setBounds(insets().left + 10,insets().top + 60,75,15);
add(passwordLabel);
userTextField = new java.awt.TextField(1) ;
userTextField.setBounds(insets().left + 85,insets().top + 28,100,22);
add(userTextField);
passTextField = new Java.awt.TextField(1) ;
passTextField.setEchoChar('*');
passTextField.setBounds(insets().left + 85,insets().top + 57,100,22);
add(passTextField);
okButton = new java.awt.Button();
okButton.setLabel("OK");
okButton.setBounds(insets().left + 80,insets().top + 95,40,20);
add(okButton);
setTitlef");
//}}

//{{REGISTER_LISTENERS
SymAction lSymAction = new SymActionO;
okButton.addActionListener(lSymAction);
//}}

}

public PasswordDialog(Frame parent)
{

this(parent, "Username/Password");
}

// Add a constructor for Interactions (ignoring modal)
public PasswordDialog(Frame parent, boolean modal)
{

this(parent);
}

// Add a constructor for Interactions (ignoring modal)
public PasswordDialog(Frame parent, String title, boolean modal)
{

this(parent, title);
}

public String getUserName()
{

return userTextField.getText ();
}

public String getPassword()
{

return passTextField.getText();
}

public void setUserName(String name)
{

userTextField.setText(name);

195

}

public void setPassword(String pass)
{

passTextField.setText(pass);
}

public void addNotifyO
{

// Record the size of the window prior to calling parents addNotify.
Dimension d = getSizeO;

super.addNotify() ;

if (fComponentsAdjusted)
return;

// Adjust components according to the insets
setSize (insets () .left + insets (). right + d.width, insetsO.top +

insets().bottom + d.height);
Component components[] = getComponents();
for (int i = 0; i < components.length; i++)
{

Point p = components[i].getLocation();
p.translate(insets().left, insets()-top);
components[i].setLocation(p);

}
fComponentsAdjusted = true;

}

// Used for addNotify check,
boolean fComponentsAdjusted = false;

//{{DECLARE_CONTROLS
Java.awt.Label nameLabel;
Java.awt.Label passwordLabel;
j ava.awt.TextField userTextField;
java.awt.TextField passTextField;
java.awt.Button okButton;
//}}

class SymAction implements java.awt.event.ActionListener
{

public void actionPerformed(java.awt.event.ActionEvent event)
{

Object object = event.getSource();
if (object == okButton)

okButton_Action(event);
}

}

void okButton_Action(java.awt.event.ActionEvent event)
{

// to do: code goes here.
String uid = getUserName();
String password = getPassword();

System, out.println("User " + uid + " Password " + password);

//pass back results to mainFrame
mainFrame.lookup(uid, password);

//get rid of the frame

196

hide();
dispose () ;

}

}

// END: passwordDialog.Java
//***

//*************•************** + ***•************■***■********** + ********

// File: dbUtil.java
// Purpose: A utility class object with functions to
// establish a connection, submit a SQL Statment,
// get database meta data
//******************+******************•*****************************

import java.sql.*;
import java.util.*; //for vector and hash
import java.io.*; //for OutputStream

public class dbUtil {

private Connection con = null;
private Statement stmt = null;
static int sqlRequest = 1;

private static final boolean debug = false; //for debugging

//*************************•********+*********

// Function: bool setConnection(String driver, String url,
// String name, String password)
// Purpose : constuctor which allows user to specify connection

public boolean setConnection(String driver, String url. String name, String
password)

{

try{
Class.forName(driver) ;
con = DriverManager.getConnection(url, name, password);

}catch(SQLException e){
System.out.println("Failed to connect to database: " + url + " " +

e.getMessage());
return false;

}catch(ClassNotFoundException e){
System.out.println("Unable to find driver class.");
return false;

}
System.out.println("Connected to Database :" + url);
return true;

}//end setConnection

// Function: Connection getConnection(String driver, String url,
// String name, String password)
// Purpose : Creates a connection and returns a conneciton object

public Connection getConnection(String driver, String url, String name,
String password)

{

197

try{
Class.forName(driver);
con = DriverManager.getConnection(url, name, password);

} catch(SQLException e){
System.out.println("Failed to connect to database: " + url + " " +

e.getMessage());
return null;

}catch(ClassNotFoundException e){
System.out.println("Unable to find driver class.");
return null;

}
System.out.println("Connected to Database :" + url);
return con;

}//end setConnection

// Function: closeConnection(
// Purpose : closes the Connection to the datasource

public void closeConnection()

{
try{

con.close () ;
}
catch (Exception e) {

e.printStackTrace ();
}

}//end closeConnection

// Function: executeSQL(String sql)
// Purpose : dynamically get table data, based upon a sql statment
// returns a vector with resultSet
// Ref: DataBase Programming with JDBC and JAVA
//*****•***************************************

public Vector executeSQL(String sql)
{

Vector resultVector = new Vector(); //to store resultSet by hashTables

int cols;
try{

stmt = con.createStatement();

if(stmt.execute(sql)){ //returns true if sql produces a resultSet

//get the SQL results
ResultSet result = stmt.getResultSet() ;

//get the resultSet metadata
ResultSetMetaData meta = result.getMetaData();

//how many columns
cols = meta.getColumnCount() ;

int xx =0;
//increment through the rows (tuples) of the result set
while(result.next()){

//each tuple gets a hashtable to store information
Hashtable rowResults = new Hashtable(cols);

198

hashtable

//increment through the tuple <name, ssn, dept>
for (int ix = 1; ix < cols; ix++){

Object obj = result.getObject(ix);

//use the column lable as the hash key and put object

if(obj == null){
rowResults.put(meta.getColumnLabel(ix) , "") ;

} else {
rowResults.put(meta.getColumnLabel(ix) , obj) ;

}//end if
}

//add the hash object to the vector
resultVector.addElement(rowResults);

}//end while

return resultVector;
}

return null; //SQL statement did not produce a ResultSet
}
catch(SQLException e){

System.err.println("Failed to executeSQLC + sql + ") function");
e.printStackTrace ();
return null;

}

}//end executeSQL

// Function : printConsole(Vector v)
// Purpose : Prints the data taken from hash table which
// is received by vector v

public void printConsole(Vector v)
{

if (v == null){
//do nothing

}
else{

Vector resultVector = v;
int vectSize = resultVector.size();

for(int ix = 0; ix < vectSize; ix++) {
//take the hashtables from the vector one by one
Hashtable myHashTable = (Hashtable)resultVector.elementAt(ix)
//enumerate the objects in hashtable
Enumeration hashEnum = (Enumeration)myHashTable.elements();

while(hashEnum.hasMoreElements()){
Object myObj = (Object)hashEnum.nextElement();
System.out.println(myObj);

}//end while

)//end for
}//end else

}//end printHashedVector()

199

// Function : String convertToString(Vector v)
// Purpose : Converts Vector into a string with the
// a delimiator |
//****************•**********•****+**************

public String convertResultSetToString(Vector v)
{

if (v == null){
//do nothing
return null;

}
else{

Vector resultVector = v;
int vectSize = resultVector.size();
StringBuffer buff = new StringBuffer();
buff.append(" ");

for(int ix = 0; ix < vectSize; ix++) {
//take the hashtables from the vector one by one
Hashtable myHashTable = (Hashtable)resultVector.elementAt(ix);
//enumerate the objects in hashtable
Enumeration hashEnum = (Enumeration)myHashTable.elements ();

while(hashEnum.hasMoreElements()){
Object oneltem = (Object)hashEnum.nextElement ();
buff.append(" ");
buff.append(oneltem.toString());
buff.appendC "); //space between each attribute

}//end while

//a deliminator to be used for printing
buff.append("I");
//append a newline statement at the end of each tuple
buff.append("\n");

}//end for

String result = new String (buff);

return result;
}//end else

}//end convertToString()

// Function : printVectorOfVectors(Vector v)
// Purpose : Prints the data taken out of the 2-D vector v
// First element of the vector is again a vector that contains
// the name of the attributes

public static void printVectorOfVectors(Vector v)

{
Vector resultVector = v;
int vectSize = resultVector.size() ;
System.out.println("in printing cycle...");
Vector attributeVector = (Vector)resultVector.firstElement () ;

System.out.println("First vector recevied...");

//print the name of the attributes of the table
for(int xx = 0 ; xx < attributeVector.size(); xx++) {

String attributeName = (String)attributeVector.elementAt(xx);
System.out.print(attributeName + " ");

}

200

System.out.printIn();

for(int ix = 1; ix < vectSize; ix++) {
//take the hashtables from the vector one by one
Vector dataVector = (Vector)resultVector.elementAt(ix);

for(int yy = 0; yy < dataVector.size(); yy++){
Object myObj = (Object)dataVector.elementAt(yy);
System.out.println(myObj);

}//end inner for
}//end outer for

}//end printVectorOfVectors()

// Function: printResultsTable(ResultSet rs, OutputStream output)
// Purpose : prints a ResultSet
// Call: printResultsTable(rs, System.out)

public void printResultsTable(ResultSet rs, OutputStream output),
throws SQLException {

// Set up the output stream
PrintWriter out = new PrintWriter(new OutputStreamWriter(output));

// Get some "meta data" (column names, etc.) about the results
ResultSetMetaData metadata = rs.getMetaData() ;

// Variables to hold important data about the table to be displayed
int numcols = metadata.getColumnCount();// how many columns
String[] labels = new String[numcols]; // the column labels
int[] colwidths = new int[numcols]; // the width of each
int[] colpos = new int[numcols]; // start position of each
int linewidth; // total width of table

// Figure out how wide the columns are, where each one begins,
// how wide each row of the table will be, etc.
linewidth = 1; // for the initial '|'.
for(int i = 0; i < numcols; i++) { // for each column

colpos[i] = linewidth; // save its position
labels[i] = metadata.getColumnLabel (i+1); // get its label
// Get the column width. If the db doesn't report one, guess
// 30 characters. Then check the length of the label, and use
// it if it is larger than the column width
int size = metadata.getColumnDisplaySize(i+1);
if (size == -1) size = 30; // some drivers return -1.

int labelsize = labels[i].length();
if (labelsize > size) size = labelsize;
colwidths[i] = size + 1; // save the column the size
linewidth += colwidths[i] + 2; // increment total size

}

// Create a horizontal divider line we use in the table.
// Also create a blank line that is the initial value of each
// line of the table
StringBuffer divider = new StringBuffer(linewidth);
StringBuffer blankline = new StringBuffer(linewidth);
for(int i = 0; i < linewidth; i++) {

divider.insert(i, '-');
blankline.insert(i, " ");

}
// Put special marks in the divider line at the column positions
for-(int i=0; i<numcols; i++) divider.setCharAt(colpos[i]-1,'+*);

divider.setCharAt(linewidth-1, ' + ') ;

201

// Begin the table output with a divider line
out.println(divider);

// The next line of the table contains the column labels.
// Begin with a blank line, and put the column names and column
// divider characters "I" into it. overwrite() is defined
//below.
StringBuffer line = new StringBuffer(blankline.toString());
line.setCharAt(0, 'I');
for(int i = 0; i < numcols; i++) {

int pos = colpos[i] + 1 + (colwidths[i]- labels[i].length())12;
overwrite(line, pos, labels[i]);
overwrite(line, colpos[i] + colwidths[i], " |");

}

// Then output the line of column labels and another divider
out.println(line);
out.println(divider);

// Now, output the table data. Loop through the ResultSet, using
// the next() method to get the rows one at a time. Obtain the
// value of each column with getObjectO, and output it, much as
// we did for the column labels above,
while(rs.next()) {

line = new StringBuf fer (blankline .toString ()) ,-
line.setCharAt (0, ' I');
for(int i = 0; i < numcols; i++) {

Object value = rs.getObject(i+1);
overwrite(line, colposfi] + 1, value.toString().trim());
overwrite(line, colpos[i] + colwidths[i], " |");

}
out.println(line);

}

// Finally, end the table with one last divider line,
out.println(divider);
out.flush();

}

/** This utility method is used when printing the table of results */
static void overwrite(StringBuffer b, int pos, String s)
{
int len = s.length();
for(int i = 0; i < len; i++) b.setCharAt(pos+i, s.charAt(i));

}

// Function: getMetaData(Statemtent stmt)
// Purpose : outputs the names of the employee
// who has consumed the most coffee
//**•**•***************+***********************

public void getMetaData(ResultSet result)
{

try{

ResultSetMetaData meta = result.getMetaData();

int numbers = 0;
int columns = meta.getColumnCount();
for (int i=l;i<=columns;i++) {

202

System.out.printin (meta.getColumnLabel(i) + "\t"
+ meta.getColumnTypeName(i));

if (meta.isSigned(i)) { // is it a signed number?
numbers++;

}
}
System.out.println ("Columns: " + columns + " Numeric:

numbers);

}catch(Exception e){
e.printStackTrace();

}
}//end getMetaDataO

// Function: getDataBaseMetaData()
// Purpose : outputs the capabilities of the dbms vendor
// Source: Java.sql.Connection
//••••a**

public void getDataBaseMetaData()
{

try{
DatabaseMetaData md = con.getMetaData();

//there are many questions you can ask, example:

if(md==null){
System.out.println ("No DataBase Meta Data") ;

}
else{

System.out.println("Database Product :" +
md.getDatabaseProductName());

System.out.println("Allowable Connection :" +
md.getMaxConnections());

System.out.println("Support Stored Procedures :" +
md.supportsStoredProcedures());

System.out.println("SQL Support of ODBC Drivers");

System.out.println("Support Core SQL :" +
md.supportsCoreSQLGrammar()) ;

System.out.println("Support Minimum SQL :" +
md.supportsMinimumSQLGrammar()) ;

System.out.println("Support Extended SQL :" +
md.supportsExtendedSQLGrammar());

System.out.println("SQL Support of JDBC Drivers");

System.out.println("Supports ANSI 92 Entry:" +
md.supportsANSI92EntryLevelSQL());

System.out.println("Supports ANSI 92 Intermediate:'
md.supportsANSI92IntermediateSQL());

System.out.println("Supports ANSI 92 Full:" +
md.supportsANSI92FullSQL()) ;

203

}
}catch(Exception e){

}
}//end getDataBaseMetaData()

//•••••••a**

// Function : printResultSetString(String message)
// Purpose :Works with above fuction
//■fr***

public void printResultSetString(String message)

{
//use a string tokenizer to parse the request, the delimiter is

blankspace
StringTokenizer tok = new StringTokenizer(message);

//evaluate the first token "select part from parts"
String command = tok.nextToken();
String from = tok.nextToken();
String restOfMsg = restOfMessage(tok);

StringTokenizer tok2 = new StringTokenizer(restOfMsg, "I");
int row = 1;
int count = 0;

System.out.println("\n************** Result Set *****************");

if(message == null){
System.out.println("No reults found");

}else{
count = tok2.countTokens();
for (int ix = 1; ix < count; ix++){

String result = tok2.nextToken();
System.out.println("row " + row++ + " " + result);

}//end for

System.out.println("\n************* End Result Set **************-);

}//end else

}//end function

// Function : String restOfMessage(StringTokenizer tok)
// Purpose :Utility function used by above function
//*************+************************■**********

private String restOfMessage(StringTokenizer tok)
{

StringBuffer buff = new StringBuffer();

//get the rest of the request
while (tok.hasMoreTokens()){

buff = buff.append(tok.nextToken()); //appends the sql statement
buff = buff.append(" ");

}

String result = new String(buff);
return result;

}

// Function: executeSQL(String sql)
// Purpose : dynamically get table data, based upon a sql statment

204

// returns a vector with resultSet
// Ref: DataBase Programming with JDBC and JAVA

public String executeSQLGetString(String sql)
{
System.out.println(" executeSQLGetString Request # " + sqlRequest++);
String resultString = null;

try{
stmt = con.createStatement();

if(stmt.execute(sql)){ //returns true if sql produces a resultSet

ResultSet result_set = stmt.getResultSet();
//put resultSet in string format
resultString = processResults(result_set);

}//end if

return resultString;
}
catch(SQLException e){

System.err.println("Failed to executeSQLC + sql + ") function");
e.printStackTrace() ;
return null;

}

}//end executeSQLGetString(String sql)

// Function: String processResults(ResultSet results)
// Purpose : Formats the result set for pretty printing
//***

public String processResults(ResultSet results) throws SQLException
{

try {
ResultSetMetaData meta = results.getMetaData();
StringBuffer bar = new StringBuffer() ;
String buffer = "";
int cols = meta. getColumnCount () ;
int row_count = 0;
int i, width = 0;

// create the bar that is as long as the total of all columns
for(i=l; i<=cols; i++) {

width += meta.getColumnDisplaySize(i) ;
}
width += 1 + cols;
for(i=0; Kwidth; i++) {

bar.append('-');
}
bar.append('\n');
buffer += bar + "|";
// After the first bar goes the column labels
for(i=l; i<=cols; i++) {

StringBuffer filler = new StringBuffer();
String label = meta.getColumnLabel(i);
int size = meta.getColumnDisplaySize(i);
int x;

// If the label is long than the column is wide,
// then we truncate the column label
if(label.length() > size) {

205

label = label.substring(0, size);
}
// If the label is shorter than the column, pad it with spaces
if(label.length!) < size) {

int j ;
x = (size-label.length())12;
for(j=0; j<x; j++) {

filler.append(' ');
}
label = filler + label + filler;
if(label.length() > size) {

label = label.substring(0, size);
}
else {

while(label.length() < size) {
label += " ";

}
}

}
// Add the column header to the buffer
buffer = buffer + label + "|";

}
// Add the lower bar
buffer = buffer + "\n" + bar;
// Format each row in the result set and add it on
while(results.next()) {

row_count++;

buffer += "|";
// Format each column of the row
for(i=l; i<=cols; i++) {

StringBuffer filler = new StringBuffer();
Object value = results.getObject (i) ;
int size = meta.getColumnDisplaySize(i);
String str = value.toString();

if(str.length() > size) {
str = str.substring(0, size);

}
if(str.length() < size) {

int j, x;

x = (size-str.length())12;
for(j=0; j<x; j++) {

filler.append(' ');
}
str = filler + str + filler;
if (str.lengthO > size) {

str = str.substring(0, size);
}
else {

while (str.lengthO < size) {
str += " ";

}
}

}//end if
buffer = buffer + str + "1";

}//end for
buffer = buffer + "\n";

}//end while

// Stick a row count up at the top
if(row_count == 0) {

206

buffer = "No rows selected.\n" + buffer;
}
else if(row_count == 1) {
buffer = "1 row selected.\n" + buffer;

}
else {
buffer = row_count + " rows selected.\n" + buffer;

}

return buffer;
}catch(SQLException e) {
throw e;

}finally {
try { results.close (); }
catch(SQLException e) { }

}
}//end processResults(ResultSet results)

}//end dbServerUtilities.Java

// END: dbUtil.java

// File: objectServer.Java
// Purpose: An object that instantiated and binds object to the
// rmiregistry, making
//***•+****************

import java.sql.*;
import java.util.*;
import j ava.rmi.*;
import Java.rmi.server.*;

public class objectServer
{

// THE MAIN
public static void main(String args [])
{

try{
//RMISecurityManager security = new RMISecurityManager ();
System.setSecurityManager(new RMISecurityManager{));

System.err.println("\nObject Server binding services...");

//bind an acctsdbServer object
Naming.rebind("acctsdbServer", new acctsdblmpl());
System.err.println("acctsdbServer...");

Naming.rebind("navydbServer", new navydblmpl());
System.err.println("navydbServer...");

Naming.rebind("adminBrokerServer", new dbAdminBroker_Impl());
System.err.println("adminBrokerServer.. . ") ;

Naming.rebind("dbBrokerServer", new dbBroker_Impl());

207

System.out.println("Instantiating the database Broker");
System.err.println("dbBrokerServer...");

System.err.println("\nObject Server, version 3.1 is ready...")

}catch(UnknownHostException e){
System.out.println("Unknown Host Exception " + e);

}catch(RemoteException e){
System.out.println("Remote Exception " + e) ;

}catch(java.net.MalformedURLException e){
System.out.println(e);

}catch(SQLException e){
System.out.println(e);

}
}//end main

}//end objectServer

// END: objectServer.Java
//***

//***•************+****

// File: dbAdminBroker_Int.Java
// Purpose: Interface for database administrator to enter new users,
// authorize them access
//***•*******+*****

import java.rmi.*;
import java.sql.*; //for ResultSet
import java.util.*; //for vecor

public interface dbAdminBroker_Int extends Remote
{

//add a user
public abstract boolean addUser(String name, String password) throws

RemoteException;

//delete a user
public abstract boolean deleteUser(String name) throws RemoteException;

//allow user access to a datasource
public abstract boolean provideAccess(String name, String dataSource) throws

RemoteException;

//modify user access privileges
public abstract void deleteAccess(String name, String dataSource) throws

RemoteException;

//admin utility
public abstract Vector getDSNNames()throws RemoteException;
public abstract boolean addDSN(String name) throws RemoteException;
public abstract Vector getUsersO throws RemoteException;
public abstract Vector getDBAccess(String name) throws RemoteException;

}

// END: dbAdminBroker_Int.Java

208

// File: dbAdminBroker_Impl.Java
// Purpose: Implementation for database administrator to enter new users,
// authorize them access
//*******•*********************■************+***+**+******************

import java.sql.*; //for JDBC
import java.util.*; //for Vector
import j ava.rmi.*;
import Java.rmi.server.*;
import java.io.*;

public class dbAdminBroker_Impl extends UnicastRemoteObject implements
dbAdminBroker_Int
{

dbUtil dbUtilities = null;
Statement stmt = null;
Connection con=null;

//**************************************■******

// Function: acctsdblmpl()
// Purpose : object default constructor
// must be declared to throw RemoteException
//**■*****

public dbAdminBroker_Impl()throws RemoteException, SQLException
{

//create a dbUtil object
dbUtilities = new dbUtil();

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String url = "jdbc:odbc:brokerAccess";
String uid = "";
String password = "";

con = dbUtilities.getConnection(driver,url,uid,password);
}//end constructor

//a-***************************USER METHODS**********************************
//add a user
public boolean addUser(String name. String password) throws RemoteException
{

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("insert into names values ('");
buff.append(name);
buff.appendC", '") ;
buff.append(password) ;
buff.append("')");
String sql = new String(buff);

System.out.println(sql) ;

//submit the statement
try{

Statement stmt = con.createStatement();
stmt.executeUpdate(sql) ;
stmt.close();
return true;

}catch(SQLException e){
System.out.println(e);

209

return false;
}//end func

//delete a user
public boolean deleteUser (String name) throws RemoteException
{

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("delete from names where name ='");
buff.append(name);
buff.append("'") ;
String sql = new String(buff);
System.out.printIn(sql) ;

StringBuffer buffi = new StringBuffer() ;
buffi.append("delete from datasources where name ='");
buffi.append(name);
buff 1.append('"") ;
String sqll = new String(buff) ;
System.out.println(sqll) ;

//submit the statement
try{

Statement stmt = con.createStatement();
stmt.executeUpdate(sql);
stmt.executeUpdate(sqll);
stmt.close();
return true;

}catch(SQLException e){
System.out.println(e);

}

return false;
}//end function

//allow user access to a datasource
public boolean provideAccess(String name, String dsn) throws RemoteException
{

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("insert into datasources values ('");
buff.append(dsn);
buff.append(*", '") ;
buff.append(name);
buff .append P')") ;
String sql = new String(buff);

System.out.println(sql);

//submit the statement
try{

Statement stmt = con.createStatement();
stmt.executeUpdate(sql);
stmt.close();
return true;

}catch(SQLException e){
System.out.println(e);

}
return false;

}//end function

210

//modify user access privileges
public void deleteAccess(String name, String dbase) throws RemoteException
{

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("delete from datasources where name ='");
buff.append(name);
buff.append("' ");
buff.append("and datasource = '");
buff.append(dbase);
buff. append ('"");
String sql = new String(buff);
System.out.println(sql);

//submit the statement
try{

Statement stmt = con.createStatement();
stmt.executeUpdate(sql);
stmt.close();

}catch(SQLException e){
System.out.println(e);

}
}

//return names 'from name name table
public Vector getUsersf) throws RemoteException
{

Vector ansVect = new Vector();
ResultSet rs = null;

//submit the statement
try{

Statement stmt = con.createStatement() ;
rs = stmt.executeQuery("select name from names");
while(rs.next()){

String nameString = rs.getString("name");
ansVect.addElement(nameString);

}
stmt.close();

}catch(SQLException e){
System.out.println(e);
return null;

}
return ansVect;

}//getUsers

//return datasource user has access to, client uses above function to get
// a list of names
public Vector getDBAccess(String name) throws RemoteException
{

Vector ansVect = new Vector();
ResultSet rs = null;

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("select datasource from datasources where name ='");
buff.append(name);
buff.append("'");
String sql = new String(buff);

System.out.println(sql) ;

//submit the statement

211

try{
Statement stmt = con. createStatement () ;
rs = stmt.executeQuery(sql);
while(rs.next()){

String dataSource = rs.getString("datasource");
System.out.printIn(dataSource);
ansVect.addElement(dataSource);

}
stmt.close() ;

}catch(SQLException e){
System.out.println(e);
return null;

}
return ansVect;

// Function: Vector getTableName ()
//
// Purpose : uses the database meta data to
// return a vector of table names
//***

public Vector getDSNNames()throws RemoteException
{

Vector ansVect = new Vector();
ResultSet rs = null;

//submit the statement
try{

Statement stmt = con.createStatement();
rs = stmt.executeQuery("select name from ds") ;
while(rs.next()){

String dataSource = rs.getString("name");
ansVect.addElement(dataSource);

}
stmt.close() ;

}catch(SQLException e){
System.out.printIn (e) ;
return null;

}
return ansVect;

}//end getDSNNames()

public boolean addDSN(String name) throws RemoteException
{

//prep the SQL Statement
StringBuffer buff = new StringBuffer();
buff.append("insert into ds values ('");
buff.append(name);
buf f. append ('")");
String sql = new String(buff);

System.out.println(sql);

//submit the statement
try{

Statement stmt = con.createStatement();
stmt.executeUpdate(sql);
stmt.close() ;
return true;

212

}catch(SQLException e){
System.out.printIn(e);
return false;

}
}//end function

}//end dbAdminBroker Impl.java

// File: dbAdminBroker_Impl.java

/ft**
// File: dbBroker_Int.java
// Purpose: Ineterface for generic database access
//************* + *****■***********■***************•********************.*

import java.rmi.*;
import java.sql.*; //for ResultSet
import java.util.*; //for vecor

public interface dbBroker_Int extends Remote
{

//connection mgmnt
public abstract boolean createConnection(String dataSource, String

userName, String pw) throws RemoteException;
public abstract void closeConnection() throws RemoteException;

//utilities
public Vector getTableNames() throws RemoteException;
public abstract String executeSQLGetString(String sql)throws

RemoteException;
public abstract Vector getTableMetaData(String sql)throws RemoteException;

}

.//***•**•*•********

// END: dbBroker_Int.java

// File: dbBroker_Impl.Java
// Purpose: Implementation for generic database broker access
//***********•****•************************■*■*■*■****•******************

import java.sql.*;
import java.util.*; //for Vector
import java.rmi.*;
import java.rmi.server.*;
import java.io.*;

public class dbBroker_Impl extends UnicastRemoteObject
implements dbBroker_Int

{
Statement stmt = null;
Connection con=null;
dbUtil dbUtilities = null;

213

//•it**

// Function: dbBroker_Impl()
// Purpose : object default constructor
// must be declared to throw RemoteException

public dbBroker_Impl()throws RemoteException, SQLException
{

//create a dbUtil object
dbUtilities = new dbUtilO;

}//end constructor

//•••■A-**

// Function: Vector setConnection(String dataSource, String uid, String
password)

// Purpose : sets the connection to the datasource, returns a vector
// containing tablenames

public boolean createConnection(String dataSource, String uid, String pw)
throws RemoteException

{
String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
if(dataSource.equals("NSGDB"))

uid = "sa";
StringBuffer buff = new StringBuffer();
buff.append("jdbc:odbc:");
buff.append(dataSource);
String url = new String(buff);

con = dbUtilities.getConnection(driver,url,uid,pw);

//get database table name
return true;

}

public void closeConnection() throws RemoteException
{
try{

con.close();
}catch(SQLException e){

System.out.println(e);
}

}

// Function: executeSQLGetString(String sql
//
// Purpose : user submits SQL statement gets back a string containing
// resultSet
//***•***

public String executeSQLGetString(String sql)throws RemoteException
{

String resultString = dbUtilities.executeSQLGetString(sql);

return resultString;

}//end executeSQL

// Function: Vector getTableName()
//
// Purpose : uses the database meta data to

214

// return a vector of table names

public Vector getTableNames() throws RemoteException
{

DatabaseMetaData dmd = null;
ResultSet rs = null;
Vector ansVect = new Vector();
try{

dmd = con.getMetaDataO ;

String[] types = {"TABLE"};
rs = dmd.getTables(null, null, "%", types);

while(rs.next ()){
String tableName = rs.getString("TABLE_NAME");
ansVect.addElement(tableName) ;

}
}catch(SQLException e){

System.out.println(e);
return null;

}

return ansVect;

}

// Function :Vector getTableMetaData(String sql)
// Purpose : user can submit a SELECT * FROM <table>
// to get a list of the column names that exist
// to display in a choice list
// Goal: return a vector of hash tables containing other information
// such as name, size, type for displaying

public Vector getTableMetaData(String sql)throws RemoteException
{

try{
Statement stmt = con.createStatement() ;

ResultSet results = stmt.executeQuery(sql);

ResultSetMetaData rsmd = results.getMetaData ();

Vector colVect = new Vector();

int cols = rsmd.getColumnCount();

for(int ix = 1; ix < cols; ix++)
{

String colName = rsmd.getColumnName(ix);

if (colName == null)
colName = "was null";

//store in vector
colVect.addElement(colName) ;

//other useful information for displaying results
int colWidth = rsmd.getColumnDisplaySize(ix);

//get the columns sql type
int colType = rsmd.getColumnType(ix);

215

}//end for

stmt.close() ;

return colVect;

}catch(SQLException e){
System.out.println(e);
return null;

}
}//end funct

}//end databaseServer

// END: dbBroker_Impl.Java

// File: navydb_Int.Java
// Purpose: Hard coded connection to navy database, offers specific
// navy database manipulation
//***********+**■*

import j ava.rmi.*;
import java.sql.*; //for ResultSet
import java.util.*; //for vecor

public interface navydblnt extends Remote
{

//** business logic **
//returns an object that implements the accessPolicy interface
public abstract accessPolicy_Int getAccessPolicy() throws RemoteException;

//** database functions **
public abstract String executeSQLGetString(String sql)throws

RemoteException;
public abstract Vector getTableName()throws RemoteException;
public abstract Vector getTableMetaData(String sql)throws RemoteException;

_}

//*********************•***

// END: navydb_Int.java
//************************+**

//******* + **********************■********************************-*■****

// File: navydb_Impl.java
// Purpose: Hard coded connection to navy database, offers specific
// navy database manipulation
//*******+***

import java.sql.*;
import java.util.*; //for Vector
import Java.rmi.*;
import java.rmi.server.*;
import java.io.*;

216

public class navydblmpl extends UnicastRemoteObject
implements navydblnt

{
Statement stmt = null;
Connection con=null;
dbütil dbUtilities = null;

//*******************************•*******■*****

// Function: accessPolicy_Int getAccessPolicy()
// Purpose : Returns a serialized object that contains the
// companies accessLogic
//*************+*******************************

public accessPolicy_Int getAccessPolicy()
{
return new accessPolicylmp();

}

//**■*■***

// Function: acctsdblmpl()
// Purpose : object default constructor
// must be declared to throw RemoteException

public navydblmpl()throws RemoteException, SQLException
{

//create a dbUtil object
dbUtilities = new dbütil();

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String url = "jdbc:odbc:NSGDB";
String uid = "sa";
String password = "";

con = dbUtilities.getConnection(driver,url,uid,password) ;

}//end constructor

//******************•*************************

// Function: executeSQLGetString(String sql
//
// Purpose : user submits SQL statement gets back a string containing
// resultSet
//*******+*************************************

public String executeSQLGetString(String sql)throws RemoteException
{

String resultString = dbUtilities.executeSQLGetString(sql);

return resultString;

}//end executeSQL

// Function: Vector getTableName()
//
// Purpose : uses the database meta data to
// return a vector of table names

public Vector getTableName()throws RemoteException
{

DatabaseMetaData dmd = null;
ResultSet rs = null;
Vector ansVect = new Vector();
try{

217

dmd = con.getMetaData();
String[] types = {"TABLE"};
rs = dmd.getTables(null, null, "I", types);

while(rs.next()){
String tableName = rs.getString("TABLE_NAME");
ansVect-addElement(tableName);

}
}catch(SQLException e){

System.out.println(e);
return null;

}

return ansVect;

}

// Function :Vector getTableMetaData(String sql)
// Purpose : user can submit a SELECT * FROM <table>
// to get a list of the column names that exist
// to display in a choice list
// Goal: return a vector of hash tables containing other information
// such as name, size, type for displaying
//**■

public Vector getTableMetaData(String sql)throws RemoteException

{
try{

Statement stmt = con.createStatement();

ResultSet results = stmt.executeQuery(sql);

ResultSetMetaData rsmd = results.getMetaData();

Vector colVect = new Vector();

int cols = rsmd.getColumnCount();

for(int ix = 1; ix < cols; ix++)
{

String colName = rsmd.getColumnName(ix);

if (colName == null)
colName = "was null";

//store in vector
colVect.addElement(colName);

//other useful information for displaying results
int colWidth = rsmd.getColumnDisplaySize(ix);

//get the columns sql type
int colType = rsmd.getColumnType(ix);

}//end for

stmt.close();

return colVect;

}catch(SQLException e){
System.out.println(e);
return null;

218

}
}//end funct

}//end databaseServer

//***

// END: navydb_Impl.Java
//** *************** **********

//***

// File: navydb_Int.Java
// Purpose: Interface for accounts database, offers client various methods
//***

impo rt j ava.rmi.*;
import java.sql.*; //for ResultSet
import java.util.*; //for vecor

public interface acctsdblnt extends Remote
{

//returns an object that implements the accessPolicy interface
public abstract accessPolicy_Int getAccessPolicy() throws RemoteException;

//database function
//DBA Functions
public abstract Vector executeSQL(String sql)throws RemoteException;
public abstract String executeSQLGetString(String sql)throws

RemoteException;
public abstract Vector getTableName()throws RemoteException;
public abstract Vector getTableMetaData(String sql)throws RemoteException;

//Basic User Functions
public abstract void insertEmployee(String name, boolean faculty) throws

RemoteException;
public abstract String viewEmployees() throws RemoteException;

//administration functions
public abstract void addUser(String uid, String pass) throws

RemoteException;
}

//***

// END: acctsdb_Impl.Java
//***

//***

// File: acctsdb_Impl.Java
// Purpose: Hard coded connection to accounts database, offers limited
// accounts database manipulation
//***

import Java.sql.*;
import java.util.*; //for Vector
import j ava.rmi.*;
import Java.rmi.server.*;

public class acctsdblmpl extends UnicastRemoteObject

219

{

implements acctsdblnt

Statement stmt = null;
Connection con=null;
dbUtil dbUtilities = null;

private boolean debug = true; //for debugging only

// Function: accessPolicy_Int getAccessPolicy()
// Purpose : Returns a serialized object that contains the
// companies accessLogic

public accessPolicy_Int getAccessPolicy()

{
return new acctsPolicylmp();

}

//administration functions
public void addUser(String uid, String pass) throws RemoteException

{
//write info to a file

}

// Function: acctsdblmpl()
// Purpose : object default constructor
// must be declared to throw RemoteException
//************************■*********************

public acctsdblmpl()throws RemoteException, SQLException
{

//create a dbUtil object
dbUtilities = new dbUtil();

String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
String url = "jdbc:odbc:acctsDataBase97";
String uid = "";
String password = "";

con = dbUtilities.getConnection(driver,url,uid,password);

}//end constructor

// Function: executeSQL(String sql)
//
// Purpose : user submits a SQL statement,
// which processed and returns a vector with resultSet
// Source: Java.sql.Connection
//**■*

public Vector executeSQL(String sql)throws RemoteException
{
Vector resultVector = new Vector();

resultVector = dbUtilities.executeSQL(sql);

return resultVector;

}//end executeSQL

220

// Function: executeSQLGetString(String sql
// Purpose : user submits SQL statement gets back a string containing
// resultSet
//***

public String executeSQLGetString(String sql)throws RemoteException
{

String resultString = dbUtilities.executeSQLGetString(sql);

return resultString;

}//end executeSQL

public void insertEmployee(String name, boolean faculty) throws
RemoteException

{
StringBuffer buff = new StringBuffer();
buff.append("insert into People values (' ");
buff.append(name);
buff.append("',");
buff.append(faculty);
buff.append(")");

String sql = new String(buff);
String junk = dbUtilities.executeSQLGetString(sql);

}

public String viewEmployees() throws RemoteException
{
String result = dbUtilities.executeSQLGetString("select * from People");
return result;

}
//************************■***•****************

// Function: Vector getTableName()
//
// Purpose : uses the database meta data to
// return a vector of table names
//*•**************************************■*****

public Vector getTableName()throws RemoteException
{

DatabaseMetaData dmd = null;
ResultSet rs = null;
Vector ansVect = new Vector();
try{

dmd = con.getMetaData() ;

String[] types = {"TABLE"};
rs = dmd.getTables(null, null, "%", types);

while(rs.next()){
String tableName = rs.getString("TABLE_NAME");
ansVect.addElement(tableName);

}
}catch(SQLException e){

System.out.println (e);
return null;

}

return ansVect;

221

}

//**

// Function :Vector getTableMetaData(String sql)
// Purpose : user can submit a SELECT * FROM <table>
// to get a list of the column names that exist
// to display in a choice list
// Goal: return a vector of hash tables containing other information
// such as name, size, type for displaying

public Vector getTableMetaData(String sql)throws RemoteException

{
try{

Statement stmt = con.createStatement();

ResultSet results = stmt.executeQuery(sql);

ResultSetMetaData rsmd = results.getMetaData();

Vector colVect = new Vector();

int cols = rsmd.getColumnCount();

for(int ix = 1; ix <= cols; ix++)
{

String colName = rsmd.getColumnName(ix);

if (colName == null)
colName = "was null";

//store in vector
colVect.addElement(colName);

//other useful information for displaying results
int colWidth = rsmd.getColumnDisplaySize(ix);

//get the columns sql type
int colType = rsmd.getColumnType(ix);

}//end for

stmt.close();

return colVect;

}catch(SQLException e){
System.out.printIn(e);
return null;

}
}//end funct

}//end databaseServer

//it*************-!!**

// END: acctsdb_Impl.Java

// File: accessPolicy_Int.Java
// Purpose: Interface to funtions that are implemented by
// accessPolicylmp.

222

public interface accessPolicy_Int
{

public abstract int getAccessCode(String name);
}

// END: accessPolicy_Int.Java

// File: accessPolicylmp
// Purpose: Contains the current accessPolicy, resides on the server,
// The policy is downloaded to the client, ensures client
// uses the current policy.
// Notes: Object must implement Serializable since the object will be
// downloaded to the client via RMI
// Object runs on client virtual machine, not the servers.

import java.io.*;

public class accessPolicylmp implements accessPolicy_Int, Serializable
{

//*******************+***•************■********

// Function: int getAccessCode(String name)
// Purpose: Based upon name, returns current access code
// which sets level of database manipulation
//**■**

public int getAccessCode(String name)
{

int accessCode = -1;
if (name.equals("dba"))

accessCode = 1;
else if(name.equals("fred"))

accessCode = 1;
else if(name.equals("ramis"))

accessCode = 1;
else

accessCode = 2;
return accessCode;

}

// END: accessPolicylmp

223

224

APPENDIX D. DEPLOYMENT

A. Deploying Jbuilder database aware Application

Before explaining the deployment of an application, some assumptions must be

made concerning about both the development and client environment:

Classpaths in the JBuilder's IDE settings must be checked in order to point to the

valid zip or jar files. See JBuilder help files for details.

If Borland DataGateway is being used, then the classpaths must include the

location of the file datagateway.zip. To do that, open the JBuilder.ini file and make sure

that classpath includes datagateway.zip. Also do the same thing for system classpath.

This is required in order for the Deployment Wizard to gather the appropriate class files

for setting the connection with the database.

Client computer has the capability to establish an Internet connection. Before

running the application, this connection must be established in order to connect to the

database server.

Client computer has a Java Runtime Environment (JRE) higher than or equal to

version 1.1. JRE is the core Java Virtual Machine that allows the applications to run on

different platforms. If the client environment does not have one, then the user must be

told to download a JRE from Sun's JRE download page (http://java.sun.com) and to

install it into his/her computer.

After satisfying the previous conditions, then follow through the steps to deploy

the application:

Create a JBuilder application that uses the Borland DataGateway for connecting

to a database.

Before compiling the project, change the OUTPATH in the project settings to

point to the folder where the projName.jpr file resides. After the compilation, an extra

directory structure inside the main project folder (the one that JBuilder creates

automatically when a project is created). The very last folder of this new directory

structure will contain the class files. If the developer does not change the OUTPATH,

then JBuilder puts your class files under JBuilder/myClasses/jproy'ec/Afo/we(folder) by

default.

Save all of the files in the project and re-build and make sure that the application

runs in the JBuilder environment by simply clicking the lightning button on the toolbar.

Bundle the class files into a compressed file by using the Deployment Wizard

(from the menu bar tools/deployment wizard...). In the Deployment Wizard pop-up frame

225

select the check boxes beside JBCL, JGL and all others options and give a name to the

file (zip/jar) that will be created by the wizard. But make sure that the path in the file

window shows the folder that jpr file resides (that is, the created jar/zip file will be in the

same directory with the jpr file). The reason of doing this is just to locate it easily.

Locate that jar or zip file and locate the broker.zip file (client side of datagateway)

in the development environment. Broker.zip file contains the necessary class files for

connecting to the Datagateway server.

Usually the clients expect to run the applications that they receive without typing

or modifying anything. In general they just want to click an icon in order to run them. So,

create a batch file which will contain the exact command line statements to run the

JBuilder application and tell the client to create a shortcut to that batch file and put it on

the desktop and run it.

Make the client create a directory structure necessary for the files that will be sent

to him/her and let him/her know which file to put where. The batch file should change the

directories down to where jar or zip file resides and should contain exact commands to

run the application. The following is an example of a batch file, assuming the client has

created the desired directory structure (in this case C:\testArea\testl\). And the files

ßfame.jar and broker.zip are currently in the testl folder and the name of the class file

that contains the main method is myMainApplication.

RunMe.bat may be like this:

cd testArea\testl

jre-cp broker.zip ; fName.jar testl.myMainApplication

Send the following files to the client:

• Jar or zip file that has been generated by the Deployment Wizard.

• Broker.zip file that will talk to DataGateway server

• The batch file

• A readme text file that explains what directories to create and where

to put the received files.

If the user has JDK 1.1 or higher, then the line beginning with jre command inside

the batch file might just be replaced with "Java -classpath .;<exact path to the classes.zip

of JDK>;broker.zip;fName.jar testl .myMainApplication". (Semicolon is used in

Windows environment, so in unix or linux environment use colon to separate the

classpath items). User can also modify the classpath of the system by adding the paths to

broker.zip and fName.jar files into the classpath settings.

226

The user can run this batch file and it will automatically launch the application

and bring up the GUI.

B. deploying jbuilder database aware applets

The followings are the assumptions for a successful applet deployment:

• Borland DataGateway has been setup correctly. And it runs without an error.

• System classpath points to datagateway.zip. If not, the user might get "No

suitable Driver" error during the execution of his/her applet.

For Windows 95, autoexec.bat file should have the following settings (path

has to be accurate):

set classpath = .;c:\Program Files\Borland\Classes\datagateway.zip

For Window NT machines, in the system properties window the classpath

system variable must contain the exact path to datagateway.zip file.

• The classpath in the JBuilder's IDE options contains datagateway.zip file. If

not, the user must go to Tools | IDE Options and edit the CLASSPATH, then

find the zip file in his driver and add it.

• JBuilder.ini file must be edited for IDECLASSPATH and CLASSPATH to point to

the file datagateway.zip. If not, the user should open the JBuilder.ini file and add the

IDECLASSPATH the exact path of datagateway.zip. The same thing must be done

for the line beginning with CLASSPATH also.

• Browsers must be Java enabled. For the time being, Netscape 4.3 and higher versions

require a Java update (which they call as SmartUpdate). For that you should visit

Netscape's home page and follow the instructions. Microsoft Internet Explorer 4.0

and Hot Java are built-in Java enabled.

After satisfying the previous conditions, then follow through the steps to deploy

the applet:

Almost everyone who develops JBuilder applet has the same deployment

frustration. The following errors are the most common ones: "No suitable Driver" or

"security.checklink:BDEDriver" or "Applet could not be initialized". Before using the

Deployment Wizard some code must be changed in order to let the wizard grab those

class files that are not added into the jar file during the execution of usual Deployment

Wizard.

Since we are talking about data-aware applets, there is at least one piece of code

in your applet that looks like this:

227

databasel.setConnection(new

borland.jbcl.dataset.ConnectionDescriptor(

"jdbc.BorlandBroker://127.0.0.1/DB,"","", false,

"borland.jdbc.Broker.RemoteDriver"));

In the above code the driver is not instantiated. So the user must instantiate the

driver by simply writing the following code before the setConnection function:

Class.forName("borland.jdbc.Broker.RemoteDriver") ;

Then remove the jdbc driver name from the connectionDescriptor. After making

these changes your code chunk will look like this:

Class.forName("borland.j dbc.Broker.RemoteDriver");

databasel.setConnection(new

borland.jbcl.dataset.ConnectionDescriptor(

"jdbc.BorlandBroker://127.0.0.1/DB,"","", false, ""));

Then build your applet and save everything frequently (JBuilder does not save

your files if you only click the build button) while you are developing. Compile and make

sure it runs in the JBuilder environment. Then deploy it by using Deployment Wizard.

Once it is done, check the jar file (by extracting and re-jaring it) make sure that you have

the directory structure \borland\jdbc\Broker in there. This indicates that the Deployment

Wizard grabbed the necessary class files that your applet needed for Borland

DataGateway connection.

Modify the html file (but do not change the code tag). Add the archive tag into the

applet tag. (i.e., <APPLET ... ARCHIVE = "myApplet.jar" ...> </APPLET>). If the

html file will stay in the same directory with the jar file and you will create a hyperlink to

that html file in your main page, then you are done. If not or if you want to embed this

applet directly into your main page without creating a link to it, then add the codebase tag

into the applet tag which should point to the folder where the jar file resides. For

example, if the path to myApplet.jar is

C:\InetPub\wwwroot\databases\JBuilder\myApplet and wwwroot is the actual root of

your web server. Then your html file might look like this:

228

<APPLET

CODEBASE = "http://131.120.1.91/database/JBuilder/myApplet"

CODE = "lastApplet.myApplet.class"

ARCHIVE = "myApplet.jar"

NAME = "JDBC Database Connectivity Applet"

="400"

= "125"

= "0"

= "0"

= "middle">

WIDTH

HEIGHT

HSPACE

VSPACE

ALIGN

</APPLET>

Basically what an applet is just a panel that is being placed onto the html page.

The dimensions of the panel are hard-coded inside the actual code. The height and the

width parameters in the html file should match with those hard-coded values. If you

specify smaller height and width values in the html file, your applet might get cut off

(that is, you will not be able to see some parts of your applet).

229

230

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Deniz Kuwetleri Komutanligi 2
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

3. Deniz Harp Okulu Komutanligi 1
Kutuphane
Tuzla, Istanbul, TURKEY 81704

4. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

5. Chairman, Code CS 1
Naval Post Graduate School
411 DyerRd.
Monterey, CA 93943-5101

6. Dr. C. Thomas Wu, Code CS/KA 1
Naval Postgraduate School
Monterey, California 93943-5100

7. LCDR Chris Eagle, Code CS/EA 1
Naval Postgraduate School
Monterey, California 93943-5100

8. LTJG Ramis Akin 2
Ilk Adim Sanayi Sitesi
290/17 Kutlukent
Samsun, TURKEY 55267

9. CPT Fred O'Brien 3
38 Beacon St.
Hyde Park, Ma 02136

231

